
Cost-awareness in Multi-Agent Active Search
Arundhati Banerjeea;*, Ramina Ghodsa and Jeff Schneidera

aSchool of Computer Science, Carnegie Mellon University

Abstract. Multi-agent active search requires autonomous agents
to choose sensing actions that efficiently locate targets. In a realistic
setting, agents also must consider the costs that their decisions incur.
Previously proposed active search algorithms simplify the problem
by ignoring uncertainty in the agent’s environment, using myopic
decision making, and/or overlooking costs. In this paper, we introduce
an online active search algorithm to detect targets in an unknown
environment by making adaptive cost-aware decisions regarding the
agent’s actions. Our algorithm proposes an online lookahead planner
that combines priniciples from Monte Carlo Tree Search, Thompson
sampling and pareto-optimal confidence bounds for decentralized
multi-agent multi-objective optimization in an unknown environment.
We analyze the algorithm’s performance in simulation to show its
efficacy in cost-aware active search.

1 Introduction
Active search [12, 13] refers to the task of efficiently discovering
members of a desired class (targets) by making online sequential
adaptive data collection decisions. For example, real world tasks like
search and rescue or environmental monitoring using autonomous
robots (agents) are best formulated as active search problems where
the agents must not only detect targets accurately but should do so
while minimizing the usage of resources like energy and time.

Previous studies have used various constraints and reductions to
achieve resource efficient adaptive search. Such algorithms generally
include parameters determining the trade-off between the informa-
tiveness of the collected data with the cost of such data collection
[43]. Adaptive sensing applications in robotics typically reduce it to
a planning problem assuming full observability of the environment
[39, 25]. Imposing a cost budget in such applications is modeled as
constrained path planning between the known start and goal loca-
tions. Unfortunately, this is in contrast with the real world where the
agent’s environment, the number of targets and their locations may be
unknown and the agent may have access only to noisy observations
from sensing actions. All these factors increase the difficulty of cost
effective active search.

Besides cost efficiency, executing active search with multiple agents
creates an additional challenge. Centralized planning in a multi-agent
setting is often impractical due to communication constraints [53, 42].
Further, a real world system dependent on a central coordinator that
expects synchronicity from all agents is susceptible to communication
or agent failure. Instead, we assume an asynchronous inter-agent com-
munication setting where each agent is able to individually plan and
execute its next sensing action using whatever information it already
has and happens to receive. Note that in our problem formulation, the

∗ Corresponding Author. Email: arundhat@andrew.cmu.edu.

(a)

(b)

(c)

Figure 1: Problem setup. (a) Region sensing active search in an 8×8
grid with 3 agents looking for 4 targets, denoted x. The agent sensing
the 1 × 1 region is closer to the grid and receives a more accurate
observation than agents sensing the 2 × 2 regions who are farther
away and receive noisier observations. (b, c) Decentralized multi-
agent asynchronous (b) vs synchronous (c) performance. The small
vertical lines indicate the start of the q-th task. The shaded regions in
(c) indicate idle time waiting for the other agent to complete its task.

agents are not entirely independent actors and therefore still share
information with their peers in the team when possible. However, we
do not require them to communicate synchronously and instead enable
decentralized and asynchronous multi-agent active search (Figure 1b).
Contributions. In this paper, we develop a novel cost-aware asyn-
chronous multi-agent active search algorithm called CAST (Cost-
Aware Active Search of Sparse Targets) to enable agents to detect
sparsely distributed targets in an unknown environment using noisy
observations from region sensing actions, without any central control
or synchronous communication (Figure 1). CAST combines Thomp-
son sampling with Monte Carlo Tree Search for lookahead planning
and decentralized multi-agent decision making. CAST introduces
Lower Confidence Bound (LCB) style pareto optimization for cost-
aware action selection by trading-off the expected future reward from
sensing actions with their associated costs. We demonstrate the effi-
cacy of CAST with a set of simulation results across different team
sizes, number of targets and size of the search space.

2 Related work
Informative Path Planning. Autonomous target search has diverse
applications in environment monitoring [40], wildlife protection [33]
as well as search and rescue operations [18]. In robotics, informative
path planning (IPP) problems focus on adaptive decision making to
reach a specified goal state or region. In contrast to our active search
setting, common IPP algorithms consider a known environment [37],
are myopic or use non-adaptive lookahead [49], and assume weakly
coupled sensing and movement actions [8].
Bayesian optimization. Bayesian optimization and active learning
methods are another approach to active search [36, 41, 22]. Unfortu-
nately, they mostly address single-agent systems, or if multi-agent

they assume central coordination [2, 21] and except for [35] lack any
realistic assumptions on sensing actions. Multi-agent asynchronous
active search algorithms proposed in [14, 15] tackle several of these
challenges but they are myopic in nature. Further, [20] introduced
cost effective non-myopic active search but their setting is simplified
assuming a known number of targets, constant cost for actions and
excluding simultaneous evaluation of multiple search points.
POMDPs and Dec-POMDPs. Our active search formulation has
close similarities with planning under uncertainty using a Partially
Observable Markov Decision Process (POMDP) [23]. Monte Carlo
Tree Search (MCTS) [26, 6] has found success as a generic online
planning algorithm in large POMDPs [48] and recently, [11, 10] pro-
posed single agent MCTS algorithms for (single objective) adaptive
decision making using information theoretic reward in continuous
state and observation domain POMDPs.

Decentralized POMDP (Dec-POMDP) [4, 38] is another frame-
work for decentralized active information gathering using multiple
agents which is typically solved using offline, centralized planning
followed by online, decentralized execution [28, 27]. Recently, [19]
formulated multi-agent active search using a deep reinforcement learn-
ing framework that depends on centralized training followed by local
inference at test time assuming a known team size. Decentralized
MCTS (Dec-MCTS) algorithms have also been proposed for multi-
robot active perception under a cost budget [50, 5] but they typically
rely on each agent optimizing for a known global objective while
maintaining a joint probability distribution over its own belief as well
as those of the other agents, that helps ensure inter-agent coordination.
Cost-budgeted planning. Finally, cost aware active search is a multi-
objective sequential decision making problem. [30] developed an
MCTS algorithm for single agent cost budgeted POMDPs using a
scalarized version of the reward-cost trade-off, whereas [52] intro-
duced multi-objective MCTS (MO-MCTS) for discovering global
pareto-optimal decision sequences in the search tree. Unfortunately,
MO-MCTS is computationally expensive and unsuitable for online
planning. [7] proposed the Pareto MCTS algorithm for multi-objective
IPP but they ignore uncertainty due to partial observability in the
search space.

3 Problem definition
Figure 1a depicts the idea behind cost-aware active search. Each agent
is actively sensing regions of the search space looking for targets. To
plan its next sensing action, the cost-aware agent has to trade-off the
expected future reward of detecting a target with the overall costs it
will incur in travelling to the appropriate location and executing the
action. Given previous observations, it adaptively makes such data-
collection decisions online while minimizing the associated costs as
much as possible. Unfortunately, this problem is NP-hard [32].
Notation. Lowercase and uppercase boldface letters represent column
vectors and matrices respectively. AT is the transpose for A. The ith
entry of a vector a is [a]i.
Sensing setup. We first describe our setup for active search with
region sensing. We consider a gridded search environment of size
n described by a sparse matrix which we want to recover through
multi-agent active search. β ∈ {0, 1}n×1 denotes the flattened vector
representation of the environment having k non-zero entries at the
true locations of the k OOIs. β is the ground truth search vector. The
sensing model for an agent j at time t is

yj
t = xj

t

T
β + ϵjt , where ϵjt ∼ N (0, σ2). (1)

xj
t ∈ Rn is the (flattened) sensing action at time t, with a non-zero

support over the sensing region and zeros elsewhere. yj
t is the agent’s

observation and ϵjt is a random, i.i.d added noise. The tuple (xj
t , y

j
t)

is agent j’s measurement at time t. We define our action space A
(xj

t ∈ A) to include only hierarchical spatial pyramid sensing actions
[29]. For example in Figure 1a, the two agents in the bottom right half
of the search space are sensing hierarchical 2× 2 and 1× 1 regions
respectively. Note that the agents using this region sensing model must
trade-off between sensing a wider area with lower accuracy versus a
highly accurate sensing action over a smaller region. The support of
the vector xt is appropriately weighted so that ∥xt∥2 = 1 to ensure
each sensing action has a constant power. This helps us in modeling
observation noise as a function of the agent’s distance from the region
[14]. Since each action has a constant power and every observation
has an i.i.d added noise with a constant variance, the signal to noise
ratio in the unit squares comprising the rectangular sensing block
reduces as the size of the sensing region is increased with increasing
distance between the agent and that region.
Cost model. We introduce the additional realistic setting that sensing
actions have different associated costs. First, we consider that the
agent travelling from location a to location b incurs a travel time
cost cd(a, b). 1 Second, we assume that executing each sensing action
incurs a time cost cs. Therefore, T time steps after starting from
location x0, an agent j has executed actions {xj

t}Tt=1 and incurs a
total cost defined by Cj(T) =

∑T
t=1(cd(x

j
t−1, x

j
t) + cs).

Communication setup. We assume that communication, although
unreliable, will be available sometimes and the agents should take
advantage of it when possible. In our setting, agents may commu-
nicate their own measurements asynchronously with other agents,
without having to wait on such communications from their peers at
any time. Figures 1b and 1c contrast the asynchronous vs synchronous
communication setup, showing that in an asynchronous setting, each
agent can continue its individual cost-aware decision making as soon
as it has finished executing its previous action. We also do not require
that the set of available past measurements remain consistent across
agents since communication unreliability prevents it.

In the multi-agent setting, since agents share their observations
asynchronously, an agent j decides its next cost-aware action at time
t using all its past measurements as well as those received from its
teammates till time t i.e. Dj

t = {(xt′ , yt′)|{t′} ⊆ {1, . . . , t − 1}},
|Dj

t | ≤ t − 1. For example, the second agent (j = 2) in the multi-
agent example in Figure 1b starts task 5 before task 3 is completed
with D2

5 = {(xt′ , yt′)|t′ = {1, 2, 4}}.

4 Our proposed algorithm: CAST

4.1 Background

We first briefly describe the concepts essential to the planning and
decision making components of our algorithm.

Monte Carlo Tree Search (MCTS) is an online algorithm that
combines tree search with random sampling in a domain-independent
manner. In our setup, a cost-aware agent would benefit from the
ability to lookahead into the adaptive evolution of its belief about
the target’s distribution in the environment in response to possible
observations from the actions it might execute. We therefore consider
MCTS as the basis for developing our online planning method with
finite horizon lookahead. But the presence of uncertainty about targets
(number and location) in the unknown environment together with the

1 We assume a constant travelling speed and compute the Euclidean distance
between locations a and b.

noisy observations introduces additional challenges in our problem
formulation that are not commonly addressed in the MCTS literature.

Pareto optimality: Our formulation of cost aware active search
described in Section 3 can be viewed as a multi-objective sequential
decision making problem where the agent trades-off the expected
reward with the incurred cost. A common approach to solving such
multi-objective optimization problems is scalarization i.e. consider-
ing a weighted combination of the different objectives resulting in
a single-objective problem. However, tuning the weight attributed
to each objective is challenging since they might be scaling quan-
tities having different units and their relative importance might be
context dependent. In contrast, pareto optimization builds on the idea
that some solutions to the multi-objective optimization problem are
categorically worse than others and are dominated by a set of pareto-
optimal solution vectors forming a pareto front for the optimization
objective. Considering a set of D-dimensional vectors g ∈ G, we
define the following:
• g dominates g′ (i.e. g ≻ g′) iff: (1) ∀d ∈ {1, . . . , D}, [g]d ≥ [g′]d
(2) ∃d ∈ {1, . . . , D}, [g]d > [g′]d
• g and g′ are incomparable (i.e. g||g′) iff: ∃d1, d2 ∈ {1, . . . , D},
[g]d1 > [g′]d1 and [g]d2 < [g′]d2
• G∗ ⊆ G is the pareto-front of G iff: (1)∀g ∈ G and ∀g′ ∈ G∗,
g ̸≻ g′ (2) ∀g,g′ ∈ G∗, g||g′.
In our algorithm, each agent estimates a reward-cost vector to evalu-
ate its candidate actions and chooses the next sensing action from a
pareto-optimal set of such vectors.

Thompson sampling (TS) [51] is an exploration - exploitation
algorithm that has been studied in a number of bandit and reinforce-
ment learning (RL) settings [17, 44, 16]. TS balances exploration with
exploitation by choosing actions that maximize the expected reward
assuming that a sample drawn from the posterior distribution is the
true state of the world. Prior work in [3, 31] note that exploration in
TS is reward oriented, leaning heavily on the drawn posterior sample.
Moreover TS only explores on the seemingly optimal policies, which
is a disadvantage in environments where knowledge-seeking actions
having lower immediate reward are crucial for the agent’s efficient
long-term performance. This is especially relevant for cost-aware
active search wherein actions which are not immediately rewarding in
terms of having detected a target may still be informative, for example
by reducing the uncertainty regarding the presence of targets in a cer-
tain part of the search space. In this work, we build upon these insights
and combine TS with MCTS to develop a search tree building strategy
for online lookahead planning in partially observable environments.

Additionally, posterior sample based action selection makes TS an
excellent candidate for a decentralized multi-agent decision making
algorithm [24] and it has been shown to be effective in multi-agent
active search with myopic planning [14, 15]. In this work, we will
show that our TS based lookahead planning algorithm enables de-
centralized multi-agent active search with no pre-coordination and
minimum communication overhead among agents, unlike existing
multi-agent algorithms that rely on pre-designed movement coordina-
tion or communication and update of joint probability distributions.

4.2 Belief representation and reward formulation

Next, we will describe two key components of our active search
algorithm: the agent’s posterior belief representation over the search
space and the reward formulation for sensing actions. Note that the
agents are unaware of the number of targets or their positions.

Belief representation: Following the setting described in Section 3,
consider J agents searching for k sparsely located targets in an un-

known environment and β is the search vector we want to recover.
The agent’s belief b(β) over β is a continuous probability distribution
over the search space. For any agent j, the prior belief is modeled
by bj0 = P(β) = N (µ0,Σ0) and the likelihood function following
the sensing model (1) is given by P(yj

t |β,x
j
t) = N (xj

t

T
β, σ2).

Therefore, at time step t, its posterior belief over β is denoted
bjt = P(β|Dj

t ∪ {x
j
t , y

j
t}) = N (µj

t ,Σ
j
t). In the multi-agent set-

ting, each agent j maintains its own posterior belief bjt(β) and MAP
estimate β̂(Dj

t ∪ {x
j
t , y

j
t}).

Reward formulation: Prior work in multi-agent active search
[14, 15] focuses on myopic decision making using TS and pro-
poses choosing the action for agent j that maximizes its one-step
lookahead reward assuming that a sample drawn from the posterior
βj

t ∼ bjt(β) is the true state of the world. Such algorithms select
xj
t that maximizes E

y
j
t |x

j
t ,β

j
t

[
λ(βj

t ,D
j
t+1)

]
where λ(βj

t ,D
j
t+1) =

−∥βj
t − β̂(Dj

t+1)∥22 and Dj
t+1 = Dj

t ∪ {x
j
t , y

j
t}. This ensures that

the agents will keep exploring the search space as long as there is
uncertainty in the posterior samples βj

t , while the posterior belief
distribution will contain uncertainty as long as there are unexplored
or less explored locations in the search space.

In contrast, the cost-aware active search agents reason about
the reward obtained by identifying targets, per unit cost incurred
from executing such sensing actions over a finite horizon looka-
head. But we note that λ(βj

t ,D
j
t+1) ≤ 0, therefore maximizing

λ
cd+cs

would erroneously favour costlier actions for the same re-

ward. Instead, we propose using the difference λ−(βj
t ,D

j
t+1) =

max{0, ∥βj
t −β̂(Dj

t)∥22−∥β
j
t −β̂(Dj

t+1)∥22} as the one-step looka-
head reward. We design λ− to encourage information gathering by
favoring actions xt that reduce the uncertainty in the posterior sample
βj

t over consecutive time steps. Additionally, λ−(βj
t ,D

j
t+1) ≥ 0.

Now, we can compute the u-step lookahead reward Ru(xt,β
j
t) over

the action sequence xt:t+u as the γ-discounted expected sum of λ−

over u steps.
Ru(xt,β

j
t) = Eyt:t+u

[u∑
∆t=1

γ∆t−1λ−(βj
t ,D

j
t+∆t)

]
(2)

Following the discussion in Section 4.1 about TS, we observe that
the reward computation in (2) is dependent on the posterior sam-
ple βj

t . Particularly, λ−(βj
t ,D

j
t+1) is higher for sensing actions xt

that identify the non-zero support elements of the vector βj
t . Further,

maximizing Ru(xt,β
j
t) over all sequences xt:t+u for a sampled βj

t

would exacerbate this problem by choosing a series of point sensing
actions that identify the non-zero support of the particular sample.
As a result, the agent might overlook possible region sensing actions
that would help reduce the uncertainty in its posterior belief, but that
do not immediately identify the support of βj

t . Section 8.2 of [44]
also highlights this drawback of employing TS based exploration in
active learning problems that require a careful assessment of the in-
formation gained from actions. In order to overcome these challenges,
we propose generalizing the posterior sampling step to a sample size
greater than one and combine the information from these samples us-
ing confidence bounds over λ− to evaluate the corresponding sensing
actions. To further clarify these design details, we now describe our
new algorithm CAST, outlined in Algorithm 1.

4.3 CAST: Cost-Aware Active Search of Sparse Targets

At each time step t, on the basis of the set Dj
t of past measure-

ments (its own measurements as well as those communicated by other
agents), the agent j decides its next region sensing action xj

t using
the SEARCH procedure of Algorithm 1. It starts with an empty tree

T j
t having just a root node and gradually builds it up over m episodes.

We assume a maximum tree depth dmax. Our search tree has two types
of nodes - belief nodes and action nodes. A belief node h is identified
by the history of actions and observations accumulated in reaching
that node. An action node (h, a) is identified by the action a taken at
the immediately preceding belief node h in the search tree. The root
as well as the leaves are belief nodes.

Algorithm 1 Cost-Aware Active Search of Sparse Targets

1: procedure MAIN ▷ Executed on each agent j
2: for t in {1, 2, . . .} do
3: xj

t = SEARCH(Dj
t , x

j
t−1, b

j
t)

4: Execute action xj
t . Observe yj

t .
5: Update Dj

t+1 = Dj
t ∪ {x

j
t , y

j
t}

6: Share {xj
t , y

j
t} asynchronously with teammates.

7: Update belief bjt+1 and estimate β̂(Dj
t+1).

8: procedure SEARCH(D, x, b)
9: Search tree T = ϕ

10: for each episode m′ ∈ {1 . . .m} do
11: Sample β ∼ b. Discretize β to get βm′ .
12: SIMULATE(βm′ ,D, x, 0)

13: A∗ =ParetoOptimalActionSet(T)
14: a∗ = argmaxa{a.r

LCB

a.cost
|a ∈ A∗}

15: return a∗

16: procedure SIMULATE(β,D, x, depth)
17: n(h)← n(h) + 1 ▷ Denote root (belief) node as h
18: if depth = dmax then return 0, 0 ▷ Reached leaf node
19: if ⌊n(h)αs⌋ > ⌊(n(h)− 1)αs⌋ then
20: add new child action node (h, a)
21: else select action node (h, a) using (3)
22: n(h, a)← n(h, a) + 1
23: o← aTβ, D′ := D ∪ {a, o}
24: if o was not previously observed at (h, a) then
25: append new node h′ due to o in branch hah′

26: rh′ = λ−(β,D′), ch′(x, a) = cd(x, a) + cs

27: Update rLCB
h′ and gh′ =

[
rLCB
h′ −ch′(x, a)

]T
28: r′, c′ = SIMULATE(β,D′, a, depth+ 1)
29: r′′ = rh′ + γ × r′, c′′ = ch′ + c′

30: Q̄UCT (h, a) =
Q̄UCT (h,a)×(n(h,a)−1)+ r′′

c′′
n(h,a)

31: LCBParetoFrontUpdate(h′)
32: LCBParetoFrontUpdate((h, a))
33: return r′′, c′′

Each episode m′ ∈ {1, . . . ,m} consists of the following steps.

1. Sampling: First, a posterior sample is drawn at the root node from
the belief bjt = P(β|Dj

t) and discretized into a binary vector
βj

m′,t ∈ {0, 1}
n (Line 11).

2. Selection and Expansion: Starting at the root node, a child action
node selection policy (tree policy) is applied recursively at every
belief node h in a top-down depth-first traversal till a leaf node
is reached. In order to prevent tree width explosion with a larger
action space, the progressive widening parameter αs (Line 19) [9]
determines when a new action node is added to the tree. For adding
a new child action node at h (Line 20), we select the action a
corresponding to the largest change in posterior belief entropy per
unit execution cost c(x, a) assuming βj

m′,t is the true state of the
world. Note that x indicates the agent’s location corresponding to

belief node h. Arriving at any action node (h, a), the correspond-
ing maximum likelihood observation o = aTβj

m′,t is computed
(Line 23) which helps transition to its child belief node h′. The
1-step reward λ−

m′ for β = βj
m′,t and associated execution cost is

computed at each belief node visited in m′ (Line 26). Every belief
and action node in m′ also updates the count of times it has been
visited so far (n(h), n(h, a) respectively).

3. Backpropagation: Once dmax is reached, the lookahead rewards
and associated costs are backpropagated up from the leaf to each
belief and action node visited in m′. Each action node stores the
discounted reward per unit cost averaged over n(h, a) simulations
in the subtree rooted at that node (Line 30). Further, each belief
and action node builds a reward-cost pareto front (Lines 31 and 32)
using the backed up values from their respective subtrees which is
utilized in deciding xt after m episodes (Line 13).

Tree policy. UCT (Upper Confidence Bound applied to trees) [26]
is the tree policy used in most MCTS implementations to balance
exploration-exploitation in building the search tree. UCT exploits
action nodes based on their lookahead reward estimates averaged over
past episodes but does not account for the inter-episode variance in
such rewards. In our setting, the lookahead reward at any action node
in an episode m′ depends on the posterior sample βj

m′,t drawn at the
root node and this stochasticity leads to sample variance especially
when the particular action node has been visited in only a few episodes.
We can account for this variance using the UCB-tuned policy [1] to
guide action node selection. Besides, [45] formalized a correction
to the UCT formula in an MDP framework replacing its logarithmic
exploration term with an appropriate polynomial. We extend it to our
tree policy in CAST, called CAST-UCT (3), by combining it with
UCB-tuned to balance exploration with exploitation while building
the search tree in our partially observable state space. Specifically,
CAST-UCT chooses

a∗ = argmax
a

Q(h, a) +

√
2σh,a

√
n(h)

n(h, a)
+

16
√

n(h)

3n(h, a)
(3)

where σ2
h,a is the variance of the episode wise terms averaged in

Q(h, a) (Line 30).
Pareto front construction with confidence bounds. During the
selection and expansion phase in any episode m′, the one-step looka-
head reward λ−

m′ is computed at each visited belief node h (Line 26).
We note that λ−

m′ depends on the posterior sample βm′ drawn for that
episode. Assuming that a belief node h is visited in n(h) episodes
so far in the search tree Tt, we account for the stochasticity in the
computed λ− by maintaining the Lower Confidence Bound (LCB)
of these rewards (denoted rLCB

h) using the Student’s t-distribution
to estimate a 95% confidence interval (Line 27). Denoting the cost
of executing the action that transitions into the belief node h as ch
(Line 26), we define a LCB based immediate (one-step lookahead)
reward-cost vector at h, gh =

[
rLCB
h −ch

]T which is essential
to our multi-objective decision making as described next. Figure 2a
highlights these variables updated during the selection and expansion
phase in one episode.

Next, we compute the pareto front over the lookahead reward-cost
vectors at tree nodes visited during the backpropagation phase in
episode m′. Figure 2b illustrates this process. Note that the search
tree depth at the leaf nodes is dmax and consecutive action and belief
nodes differ in depth by 0.5. The lookahead reward-cost vector at the
action node at depth dmax− 0.5 is the weighted average of the reward-
cost vectors ghℓ of all its leaves hℓ, weights being in proportion of

(a)

(b)

Figure 2: Illustration of a search tree Tt with dmax = 2. b0 is the
belief at the root node. The action nodes (rectangles) indicate region
sensing actions. The belief nodes (circles) are shaded to indicate the
evolving posterior belief in the search tree. (a) Illustration of top-down
traversal for episode m′. rLCB

1 , c1, n1, rLCB
2 , c2 and n2 are updated.

(b) Illustration of bottom-up traversal for episode m′. PV{1,2} are
vectors, PF{1,2,3,4} are the pareto fronts at the respective belief and
action nodes. γ is the discount factor. ParetoFront() obtains the pareto-
optimal vectors from an input set. During backpropagation in episode
m′, only PV1, PF1 and PF3 are updated corresponding to nodes
encountered during top-down traversal.

their visits (eg. PV1 in Figure 2b). Next, the belief node at depth
dmax − 1 builds a pareto front from the lookahead reward-cost vectors
of all its children action nodes. It then takes a discounted sum of
its immediate reward-cost vector with this pareto front to build its
lookahead reward-cost vector set (eg. PF1 in Figure 2b).

Repeating these steps in episode m′ all the way up to the root node,
we alternate between the following: 1) every action node builds its
lookahead reward-cost vector set as the pareto front computed from
the weighted average of the lookahead vectors of its children belief
nodes 2) every belief node builds its lookahead reward-cost vector set
by taking the discounted sum of its immediate reward-cost vector with
the pareto front obtained from its children action nodes. Note that all
reward-cost vectors use the LCB of the rewards. Therefore, at the end
of m episodes, each child action node at the root has an LCB based
pareto-optimal set of lookahead reward-cost vectors. A∗

t (Line 13) is

the pareto front over such action nodes at the root.2 Finally, the agent
selects the action node having the maximum value of reward per unit
cost among its vectors in A∗

t (Line 14). This completes the agent’s
decision making step at time t.
Remark 1. In summary, posterior sampling based lookahead planning
enables decentralized and asynchronous multi-agent decision making
in CAST so that each agent can select and execute region sensing
actions using its current posterior belief, which is updated with its
own previous measurements and those received from other agents.
Additionally, LCB based pareto front construction helps select actions
taking into account the sample variability in multi-step reward-cost
trade-off computation.

5 Results
We evaluate CAST by comparing in simulation the total cost incurred
during multi-agent active search using cost-aware agents against the
cost-agnostic active search algorithms SPATS [14] and RSI [35].
SPATS is a TS based algorithm for multi-agent active search, whereas
RSI chooses sensing actions that maximize its information gain. We
consider sequential point sensing (PS) for exhaustive coverage.
Remark 2. Our purpose in contrasting these baselines with CAST
is to demonstrate the benefit of an explicit cost-aware approach to
multi-agent active search. To the best of our knowledge, there are no
other cost-aware active search baselines that we could compare to
CAST. Moreover, pareto-optimality in multi-agent multi-objective
decision making under uncertainty is not a well studied setting, so
comparison to such algorithms is not considered in our problem setup.

In our experiments, we focus on 2-dimensional (2D) search spaces
discretized into square grid cells of width 10m. An agent can move
horizontally or vertically at a constant speed of 5m/s. Each sensing ac-
tion incurs a fixed cost of cs seconds (s), in addition to the travel time
between sensing locations. We note that the cost-aware active search
strategy may differ depending on the relative per unit magnitudes of
sensing cost cs and travel cost cd. Hence, for each setting, we will
vary cs ∈ {0s, 50s} to simulate high travel cost and high sensing cost
respectively. Throughout, any agent is allowed to consider only hier-
archical spatial pyramid sensing actions. Our goal is to estimate the
k-sparse signal β by detecting all k targets with a team of J agents.

The search vector β is generated as a randomly uniform k-sparse
vector. All the algorithms are unaware of k and the generative prior.
We set the signal-to-noise ratio to 16. For CAST, we set γ = 0.97 and
αs = 0.5. The hyperparameters in SPATS and RSI follow [14, 35].

In all our experiments we allow the agents to continue searching
the space until all targets have been recovered. Then, across multiple
random trials we measure the mean and standard error (s.e.) of the
total cost incurred by the team (not to be confused with cost per agent)
in recovering all k targets. We also plot the mean and s.e. of the full
recovery rate achieved as a function of the total cost incurred. The full
recovery rate is defined as the fraction of targets in β that are correctly
identified. 3 All agents start from the same location at one corner of
the search space, fixed across trials. But the exact instantiation of the
search space varies across trials in terms of the position of the targets.
Remark 3. The size of the action space in our experiments is larger
than what MCTS algorithms commonly deal with, unless they are

2 With increasing tree width, the computational complexity of building the
pareto front at each action node increases, but the size of the pareto front
does not explode. Note that the reward function is adaptive submodular and
the cost is monotonic increasing with number of actions, so we do not get a
dense pareto-front.

3 The full recovery rate is 1 when the agents have no false positives or false
negatives in their estimated target locations based on their posterior beliefs.

augmented with a neural policy network [46, 47]. Having a continuous
state vector gives rise to additional challenges of exploding width at
the belief nodes, making the tree too shallow to be useful and may
cause collapse of belief representations resulting in overconfidence
in the estimated policy. Further, the added observation noise would
exacerbate these challenges.

5.1 2D search space discretized into 16× 16 grid cells

Figure 3 shows the mean and s.e. of the full recovery rate versus total
cost incurred over 10 trials with J agents looking for k = 5 targets
in a 16×16 search space. We vary the team size as J ∈ {4, 8, 12}.
Table 1 indicates the corresponding mean and s.e. of the total cost
to correctly detect all targets. CAST simulates m = 25000 episodes
with a lookahead horizon of 2 actions (dmax = 2). Each agent can
choose from 341 region sensing actions over successive time steps.4

Table 1: Total cost (mean and s.e. over 10 trials) to achieve full recov-
ery in a 16×16 grid with J agents, k = 5 targets. CAST outperforms
all other baselines for different team sizes and different relative costs
for travelling and sensing.

Algorithm J cs = 0s cs = 50s

CAST 4 655.9 (39.4) 6852.3 (314.1)
SPATS 2988.8 (285.6) 12563.8 (1132.7)
RSI 797.4 (37.2) 6862.4 (252.8)
PS 1654.1 (64.4) 42753.3 (1742.6)

CAST 8 827.0 (48.4) 9529.7 (350.6)
SPATS 2482.3 (255.7) 10242.3 (1033.6)
RSI 1455.5 (59.8) 12815.5 (513.6)
PS 3414.9 (143.7) 88839.9 (3735.3)

CAST 12 991.6 (39.6) 7647.6 (445.4)
SPATS 2699.2 (240.1) 10764.2 (948.8)
RSI 2118.9 (71.0) 19023.9 (551.1)
PS 4827.0 (167.4) 125582.0 (4352.2)

We observe that CAST outperforms SPATS, RSI and PS by in-
curring a lower cost and a higher full recovery rate across different
team sizes and cost scenarios. RSI is information greedy and out-
performs SPATS and PS when there are fewer agents searching the
region. Unfortunately, RSI is deterministic in its decision making
and as a result all agents choose the same actions, which leads to an
increasing cumulative cost with larger team sizes. On the other hand,
the stochastic nature of TS based active search in SPATS is suited to
the asynchronous and decentralized multi-agent setup and becomes
competitive especially in the setting where sensing actions are more
expensive than travelling (cs = 50s) which aligns more with the
objective of (cost-agnostic) active information gathering. Exhaustive
coverage in PS is comparable only with a smaller team size in the case
when travelling is expensive (J=4,cs=0s) but outperforms SPATS
in that setting, thereby showing the need for cost-awareness in active
search. Unfortunately in cases that do not match their most favorable
scenarios, all of these algorithms exhibit poor cost efficiency. In con-
trast, the cost-aware agents using CAST’s posterior sampling based
lookahead pareto-optimal planning and stochastic decision making
are able to achieve cost efficiency across different cost scenarios with
teams of varying sizes.

We also evaluate the robustness of CAST by comparing the total
cost incurred to correctly identify all targets as the number of targets
increases in the search space. Table 2 shows the mean and s.e. over 5

4 |A| = 341 for a hierarchical region sensing action space in a 16×16 grid.

0 500 1,000 1,500 2,000 2,500 3,000

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

J = 4, cs = 0s

CAST
SPATS
RSI
PS

0 0.5 1 1.5 2 2.5

·104

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

J = 4, cs = 50s

CAST
SPATS
RSI
PS

0 500 1,000 1,500 2,000 2,500 3,000

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

J = 8, cs = 0s

CAST
SPATS
RSI
PS

0 0.5 1 1.5 2 2.5

·104

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

J = 8, cs = 50s

CAST
SPATS
RSI
PS

0 500 1,000 1,500 2,000 2,500 3,000

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

J = 12, cs = 0s

CAST
SPATS
RSI
PS

0 0.5 1 1.5 2 2.5

·104

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

J = 12, cs = 50s

CAST
SPATS
RSI
PS

Figure 3: Full recovery rate versus total cost incurred in seconds in a
16 × 16 grid with J agents, k = 5 targets. Shaded regions indicate
standard error over 10 trials. Compared to baselines, CAST achieves
a full recovery rate of 1 at a lower total cost, both when traveling is
costlier than sensing (cs = 0s) and when sensing is more expensive
(cs = 50s).

Table 2: Total cost (mean and s.e. over 5 trials) to achieve full recovery
in a 16×16 grid with J = 8 agents, k targets. For different number
of targets, CAST incurs similar total cost for the same grid size and
teamsize. CAST also incurs a lower cost compared to baselines.

Algorithm k cs = 0s cs = 50s

CAST 4 740.7 (26.5) 8130.4 (293.1)
SPATS 3404.4 (432.9) 13574.4 (1792.2)
RSI 1262.8 (73.4) 10242.8 (685.8)
PS 2698.3 (438.6) 70208.3 (11404.6)

CAST 8 735.3 (57.9) 9157.0 (476.7)
SPATS 3217.2 (461.5) 13267.2 (1737.3)
RSI 1968.4 (72.2) 18398.4 (500.3)
PS 3339.9 (151.7) 86889.9 (3945.2)

CAST 16 843.9 (29.9) 8880.8 (316.2)
SPATS 3032.7 (54.3) 13212.7 (321.0)
RSI 2734.4 (58.9) 30524.4 (871.3)
PS 3559.1 (83.7) 92589.1 (2176.8)

trials of the total cost incurred to reach full recovery with J = 8 agents
and varying number of targets k in a 16×16 search space. We observe
that CAST not only outperforms all others across multi-target and cost
scenarios, additionally the total cost incurred is hardly affected by k
since CAST enables each agent to be cost-aware through decentralized
decision making independent of team size J and sparsity rate k. In
contrast, SPATS being myopic in nature exhibits more randomness in
the actions selected, whereas RSI approximates its mutual information
objective assuming k = 1, thereby requiring more sensing actions to

recover all targets as k increases.

5.2 Comparison with myopic cost-aware variations of
SPATS

As discussed earlier in Section 5, to the best of our knowledge, there
are no existing cost-aware active search baselines to compare against
CAST. We therefore modify the cost-agnostic myopic active search
baseline SPATS [14] to incorporate cost-awareness in two different
ways.
SPATS-scalarize. First, we consider a scalarized cost-aware version
of the SPATS decision making objective:

xj
t = argmax

x
λrEy|x,β̃[−∥β̃ − β̂(Dj

t ∪ {x, y})∥
2
2]

− λdcd(x
j
t−1, x)− λscs (4)

Since the sensing cost cs is a constant for all actions, it does not affect
the action selected for different cs. Instead, the agent will optimize
only for the reward vs. travel cost, weighted by the reward coefficient
λr and the travel cost coefficient λd. λs is the sensing cost coefficient,
such that λr + λd + λs = 1.
SPATS-pareto. Second, we consider a pareto-optimization approach
to augment the myopic decision making step of a SPATS agent. For
each feasible action x, the agent constructs a myopic reward-cost

vector:

[
Ey|x,β̃[−∥β̃ − β̂(Dj

t ∪ {x, y})∥22]
−(cd(xj

t−1, x) + cs)

]
. The pareto-front over

such reward-cost vectors would exclude all actions with a lower
reward and a higher cost. Then the agent selects the action from
the pareto-front having the maximum one-step reward per unit cost:

xj
t = argmax

x

Ey|x,β̃[−∥β̃ − β̂(Dj
t ∪ {x, y})∥22]

cd(x
j
t−1, x) + cs

. (5)

Unlike SPATS-scalarize, SPATS-pareto does not depend on λd.

Table 3: Total cost (mean and s.e. over 10 trials) to achieve full recov-
ery in a 16×16 grid with J agents, k = 5 targets. CAST outperforms
the myopic cost-aware modifications of SPATS across different team
sizes and cost scenarios.

Algorithm J cs = 0s cs = 50s

CAST 4 655.9 (39.4) 6852.3 (314.1)
SPATS-scalarize 673.5 (61.5) 13853.6 (845.4)
SPATS-pareto 693.7 (33.5) 23470.7 (1341.9)

CAST 8 827.0 (48.4) 9529.7 (350.6)
SPATS-scalarize 851.2 (53.4) 16296.8 (956.8)
SPATS-pareto 1018.0 (74.8) 26783.4 (1392.1)

CAST 12 991.6 (39.6) 7647.6 (445.4)
SPATS-scalarize 1001.2 (64.7) 18598.6 (1067.6)
SPATS-pareto 1122.4 (146.6) 32472.2 (1487.6)

In Table 3 and Table 4, we observe that CAST still outperforms
these modified cost-aware myopic baselines, SPATS-scalarize and
SPATS-pareto, across different number of targets, different team sizes
and different cost scenarios. For SPATS-scalarize, when cs=0s, grid
search over λd indicates minimum cost incurred for λd=0.5, so we set
λd=0.5, λr=0.5 in our experiments. λs does not affect the action se-
lected, so we set λs=0. When cs=50s, SPATS-scalarize with λd=0.5
selects the same actions as when cs=0s, thus incurring a notice-
ably higher cost compared to cost-agnostic SPATS with λd=0,λs=0.
SPATS-pareto selects the action from its pareto-front maximizing the

one-step reward per unit cost (Equation (5)), which as we discussed
in Section 4.2 would prefer actions with a higher incurred cost for the
same reward. As a result, SPATS-scalarize outperforms SPATS-pareto
in the same myopic decision making setting. In contrast, lookahead
planning in CAST enables cost-aware action selection and incurs a
lower cumulative cost than these baselines. CAST shows noticeable
performance gain especially across different team sizes (J) with a
higher sensing cost (cs = 50s) or more number of targets (k) in the
search space. These observations therefore imply the need for careful
consideration of how cost-awareness is incorporated in multi-agent
active search and validate our algorithm CAST in this setting.5

Table 4: Total cost (mean and s.e. over 5 trials) to achieve full recovery
in a 16 × 16 grid with J = 8 agents, k targets. CAST outperforms
the myopic cost-aware modifications of SPATS for different num-
ber of targets in the search space, with increasing cost-efficiency in
comparison for higher k.

Algorithm k cs = 0s cs = 50s

CAST 4 740.7 (26.5) 8130.4 (293.1)
SPATS-scalarize 777.5 (66.7) 15522.7 (1563.5)
SPATS-pareto 909.0 (78.5) 26157.2 (1805.2)

CAST 8 735.3 (57.9) 9157.0 (476.7)
SPATS-scalarize 884.8 (67.5) 19669.7 (944.2)
SPATS-pareto 1010.4 (55.9) 29126.9 (752.3)

CAST 16 843.9 (29.9) 8880.8 (316.2)
SPATS-scalarize 976.6 (44.6) 21328.7 (918.3)
SPATS-pareto 1049.6 (49.5) 29651.4 (870.2)

6 Conclusion

We have proposed CAST, an online cost-aware asynchronous multi-
agent active search algorithm without a central planner. CAST is
grounded on realistic assumptions of region sensing and observation
sensor noise. CAST combines posterior sampling for decentralized
multi-agent decision making, MCTS for multi-step lookahead plan-
ning and LCB based pareto-front construction for multi-objective
optimization while overcoming the sample variability in estimating
lookahead reward values. Similar to other tree search algorithms,
CAST also experiences increasing computation time as the size of
the search space or the tree depth increases. This can be mitigated
by using a policy network as is common in game-tree based MCTS
[46] or by implementing techniques for parallelizing MCTS, which
is an active area of research [34, 54]. We leave such modifications as
potential steps for future work.

References

[1] J-Y Audibert, R Munos, and C Szepesvari, ‘Use of variance es-
timation in the multi-armed bandit problem’, in NIPS Workshop
on On-line Trading of Exploration and Exploitation, (2006).

[2] J Azimi, A Fern, X Z Fern, G Borradaile, and B Heeringa, ‘Batch
active learning via coordinated matching’, in ICML, (2012).

[3] A Bai, F Wu, Z Zhang, and X Chen, ‘Thompson sampling based
monte-carlo planning in pomdps’, in ICAPS, volume 24, (2014).

[4] D S Bernstein, R Givan, N Immerman, and S Zilberstein, ‘The
complexity of decentralized control of markov decision pro-
cesses’, Mathematics of operations research, 27(4), (2002).

5 Please additionally refer to the supplementary material at this link.

https://sites.google.com/view/cast-multiagent/home

[5] G Best, O M Cliff, T Patten, R R Mettu, and R Fitch, ‘De-
centralised monte carlo tree search for active perception’, in
Algorithmic Foundations of Robotics XII, Springer, (2020).

[6] C B Browne et al., ‘A survey of monte carlo tree search methods’,
IEEE T-CIAIG, (2012).

[7] W Chen and L Liu, ‘Pareto monte carlo tree search for multi-
objective informative planning.’, in RSS, (2019).

[8] S Choudhury, N Gruver, and M J Kochenderfer, ‘Adaptive infor-
mative path planning with multimodal sensing’, in ICAPS.

[9] R Coulom, ‘Computing “elo ratings” of move patterns in the
game of go’, ICGA journal, 30(4), (2007).

[10] J Fischer and Ö S Tas, ‘Information particle filter tree: An online
algorithm for pomdps with belief-based rewards on continuous
domains’, in ICML, (2020).

[11] G Flaspohler, V Preston, A PM Michel, Y Girdhar, and N Roy,
‘Information-guided robotic maximum seek-and-sample in par-
tially observable continuous environments’, IEEE RAL, (2019).

[12] R Garnett, Y Krishnamurthy, D Wang, J Schneider, and R Mann,
‘Bayesian optimal active search on graphs’, in Ninth Workshop
on Mining and Learning with Graphs, (2011).

[13] R Garnett, Y Krishnamurthy, X Xiong, J Schneider, and R Mann,
‘Bayesian optimal active search and surveying’, in ICML, (2012).

[14] R Ghods, A Banerjee, and J Schneider, ‘Decentralized multi-
agent active search for sparse signals’, in UAI, (2021).

[15] R Ghods, W J Durkin, and J Schneider, ‘Multi-agent active
search using realistic depth-aware noise model’, in IEEE ICRA,
(2021).

[16] A Gopalan and S Mannor, ‘Thompson sampling for learning
parameterized markov decision processes’, in COLT, (2015).

[17] A Gopalan, S Mannor, and Y Mansour, ‘Thompson sampling
for complex online problems’, in ICML, (2014).

[18] A Gupta, D Bessonov, and P Li, ‘A decision-theoretic approach
to detection-based target search with a uav’, in 2017 IEEE/RSJ
IROS, (2017).

[19] C Igoe, R Ghods, and J Schneider, ‘Multi-agent active search:
A reinforcement learning approach’, IEEE RAL, (2021).

[20] S Jiang, R Garnett, and B Moseley, ‘Cost effective active search’,
in NeurIPS, (2019).

[21] S Jiang, G Malkomes, M Abbott, B Moseley, and R Garnett,
‘Efficient nonmyopic batch active search’, in NeurIPS, (2018).

[22] S Jiang, G Malkomes, G Converse, A Shofner, B Moseley, and
R Garnett, ‘Efficient nonmyopic active search’, in ICML, (2017).

[23] L P Kaelbling, M L Littman, and A R Cassandra, ‘Planning
and acting in partially observable stochastic domains’, Artificial
intelligence, 101(1-2), (1998).

[24] K Kandasamy, A Krishnamurthy, J Schneider, and B Póczos,
‘Parallelised bayesian optimisation via thompson sampling’, in
AISTATS, (2018).

[25] D Kent and S Chernova, ‘Human-centric active perception for
autonomous observation’, in 2020 IEEE ICRA, (2020).

[26] L Kocsis and C Szepesvári, ‘Bandit based monte-carlo planning’,
in ECML, (2006).

[27] M Lauri and F Oliehoek, ‘Multi-agent active perception with
prediction rewards’, NeurIPS, 33, (2020).

[28] M Lauri, J Pajarinen, and J Peters, ‘Multi-agent active infor-
mation gathering in discrete and continuous-state decentralized
pomdps by policy graph improvement’, AAMAS, 34(42), (2020).

[29] S Lazebnik, C Schmid, and J Ponce, ‘Beyond bags of features:
Spatial pyramid matching for recognizing natural scene cate-
gories’, in CVPR, volume 2, (2006).

[30] J Lee, G-H Kim, P Poupart, and K-E Kim, ‘Monte-carlo tree

search for constrained pomdps’, in NeurIPS, (2018).
[31] J Leike, T Lattimore, L Orseau, and M Hutter, ‘Thompson

sampling is asymptotically optimal in general environments’,
arXiv:1602.07905, (2016).

[32] Z W Lim, D Hsu, and W S Lee, ‘Adaptive informative path
planning in metric spaces’, IJRR, (2016).

[33] J Linchant, J Lisein, J Semeki, P Lejeune, and C Vermeulen, ‘Are
unmanned aircraft systems (uas s) the future of wildlife moni-
toring? a review of accomplishments and challenges’, Mammal
Review, 45(4), (2015).

[34] A Liu, Y Liang, J Liu, G Van den Broeck, and J Chen,
‘On effective parallelization of monte carlo tree search’,
arXiv:2006.08785, (2020).

[35] Y Ma, R Garnett, and J Schneider, ‘Active search for sparse
signals with region sensing’, in AAAI, (2017).

[36] R Marchant, F Ramos, S Sanner, et al., ‘Sequential bayesian
optimisation for spatial-temporal monitoring.’, in UAI, (2014).

[37] A A Meera, M Popović, A Millane, and R Siegwart, ‘Obstacle-
aware adaptive informative path planning for uav-based target
search’, in IEEE ICRA, (2019).

[38] F A Oliehoek, C Amato, et al., A concise introduction to decen-
tralized POMDPs, volume 1, Springer, 2016.

[39] R Pěnička, J Faigl, M Saska, and P Váňa, ‘Data collection
planning with non-zero sensing distance for a budget and curva-
ture constrained unmanned aerial vehicle’, Autonomous Robots,
43(8), (2019).

[40] M Popović, T Vidal-Calleja, G Hitz, I Sa, R Siegwart, and J Ni-
eto, ‘Multiresolution mapping and informative path planning for
uav-based terrain monitoring’, in 2017 IEEE/RSJ IROS, (2017).

[41] P Rajan, W Han, R Sznitman, P Frazier, and B Jedynak,
‘Bayesian multiple target localization’, Journal of Machine
Learning Research, 37, (2015).

[42] C Robin and S Lacroix, ‘Multi-robot target detection and track-
ing: taxonomy and survey’, Autonomous Robots, 40(4), (2016).

[43] D M Roijers, P Vamplew, S Whiteson, and R Dazeley, ‘A sur-
vey of multi-objective sequential decision-making’, Journal of
Artificial Intelligence Research, (2013).

[44] D Russo, B Van Roy, A Kazerouni, I Osband, and Z Wen, ‘A
tutorial on thompson sampling’, arXiv:1707.02038, (2017).

[45] D Shah, Q Xie, and Z Xu, ‘Non-asymptotic analysis of monte
carlo tree search’, in 2020 SIGMETRICS.

[46] D Silver et al., ‘Mastering the game of go with deep neural
networks and tree search’, nature, 529(7587), (2016).

[47] D Silver et al., ‘Mastering the game of go without human knowl-
edge’, nature, 550(7676), (2017).

[48] D Silver and J Veness, ‘Monte-carlo planning in large pomdps’,
in NIPS, (2010).

[49] A Singh, A Krause, and W J Kaiser, ‘Nonmyopic adaptive
informative path planning for multiple robots’, in IJCAI, (2009).

[50] F Sukkar, G Best, C Yoo, and R Fitch, ‘Multi-robot region-of-
interest reconstruction with dec-mcts’, in IEEE ICRA, (2019).

[51] W R Thompson, ‘On the likelihood that one unknown proba-
bility exceeds another in view of the evidence of two samples’,
Biometrika, 25(3/4), (1933).

[52] W Wang and M Sebag, ‘Multi-objective monte-carlo tree
search’, in ACML, (2012).

[53] Z Yan, N Jouandeau, and A A Cherif, ‘A survey and analysis of
multi-robot coordination’, IJARS, 10(12), (2013).

[54] X Yang, T K Aasawat, and K Yoshizoe, ‘Practical massively
parallel monte-carlo tree search applied to molecular design’,
arXiv:2006.10504, (2021).

https://www.jair.org/index.php/jair/article/view/10836
https://www.jair.org/index.php/jair/article/view/10836

6.1 Belief model for CAST

In what follows, we will describe the belief model used in CAST as
discussed in Section 4.2.

Notations: Non-bold characters represent scalars. Lowercase and
uppercase boldface letters represent column vectors and matrices
respectively. AT is the transpose for a matrix A. In denotes an n×n
identity matrix. The ith entry of a vector a is [a]i and the (i, j)th entry
of a matrix A is [A]ij . diag(a) is a square matrix with a on the main
diagonal. q ∗A indicates multiplication of scalar q with every element
of A. 1n×1 indicates a n× 1 dimensional vector of ones.

Assuming that the targets are sparsely distributed in the environ-
ment, an agent’s belief over search vector β ∈ Rn is modeled by a
sparse prior b0:

b0 = P(β) = N (µ0,Σ0), (6)

where µ0 = 1
n
∗1n×1 and Σ0 = diag(τ), with hyperparameter τ ∈

Rn. Given the measurement set Dj
t = {xj

i , y
j
i }

t−1
i=1 we define Xj

t as
the matrix [xj

1

T
... xj

t−1

T
]T and yj

t as the column vector [yj
1 ... yj

t−1]
T.

The likelihood function is P(yj
t |X

j
t ,β) = N (Xj

tβ, σ
2 ∗ It−1) from

Equation (1). Therefore, the posterior belief over β is

P(β|Dj
t , τ) = N (µj

β(τ),Σ
j
β(τ)) (7)

where

Σj
β(τ) = ((Σ0)

−1 +
1

σ2
Xj

t

T
Xj

t)
−1 (8)

µj
β(τ) = µ0 +

1

σ2
Σj

β(τ)X
j
t

T
(yj

t −Xj
tµ0). (9)

The hyperparameter τ can be estimated using Expectation Maximiza-
tion over p = 1, 2, . . . , nEM iterations as follows.

E-step: µ(p)
β = µβ(τ

(p−1)) (10)

Σ
(p)
β = Σβ(τ

(p−1)) (11)

M-step: ∀j = 1, . . . , n

[τ (p)]j = [Σ
(p)
β]jj + ([µ

(p)
β]j −

1

n
)2 (12)

At time step t, after the agent executes action xj
t and receives an

observation yj
t , we update its estimate β̂(Dj

t ∪ {x
j
t , y

j
t}) using the

MAP estimator given by:

β̂(Dj
t ∪ {x

j
t , y

j
t})

=
(
σ2 ∗Σ0

−1 +
[
Xj

t

T
xj
t

] [Xj
t

xj
t

T

])−1
[
Xj

t

T
xj
t

] [yj
t

yj
t

]
(13)

where Σ0 = diag(τ (nEM)).

6.2 Additional implementation details

Table 5 summarizes the various symbols and notations used in de-
scribing CAST in Section 4.3.

Now let us briefly describe the algorithms RSI, SPATS and PS
which we compare against CAST.
Review of RSI (Region Sensing Index): RSI [35] is a single agent
myopic active search algorithm wherein at any time step t, the agent
selects the region sensing action xt which would maximize the mutual
information between the resulting observation yt and the search vector
β i.e.

xt = argmax
x

I(β; y|x,D1
t). (14)

Table 5: Symbols and notations in Section 4.3

Notation Definition

bt(β) Posterior belief over β at time step t

Dj
t Set of past actions and observations available to the agent

j at time t
λ− One-step lookahead reward for a CAST agent
dmax Maximum lookahead depth of the search tree. Successive

levels differ by a depth of 0.5.
n Dimension of β
n(h) Number of times belief node h is visited in search tree Tt
n(h, a) Number of times action node (h, a) is visited in search tree

Tt
x Position of an agent in the search space after executing

sensing action x
a Position of an agent in the search space after executing

sensing action a
cd(x, a) Time cost of agent travelling from position x to position a
cs Time cost of agent executing a sensing action x
γ Discount factor for computing multi-step lookahead reward

over a finite horizon
αs Progressive widening parameter
m Total number episodes of tree building in every decision

making time step
J Total number of agents performing active search

The mutual information I is computed using the posterior distribution
P(β|D1

t) = b0
∏t−1

t′=1 P(yt′ |xt′ ,β) with a k-sparse uniform prior b0
and the same likelihood distribution as in Section 6.1. Unfortunately,
computing I is cumbersome for sparsity k > 1 and RSI addresses
this by iteratively identifying the most likely target locations from its
belief assuming k = 1.
Review of SPATS (Sparse Parallel Asynchronous Thompson Sam-
pling): SPATS [14] is a multi-agent decentralized and asynchronous
active search algorithm which uses Thompson sampling (TS) to deter-
mine the next sensing action, i.e.

xj
t = argmax

x
Ey|x,β̃[−∥β̃ − β̂(Dj

t ∪ {x, y})∥
2
2] (15)

where β̃ is a sample drawn from the posterior P(β|Dj
t) which is

a normal distribution assuming a block sparse prior and the same
likelihood distribution as in Section 6.1. Unfortunately, SPATS is
myopic in nature and relies on a carefully tuned block length reduction
schedule in its posterior belief update to overcome the limitations of
purely TS based exploration strategy in active search as discussed in
Section 4.1.
Sequential Point Sensing (PS): We design this as an exhaustive
coverage baseline where an agent starts from one corner on the grid
and traverses every grid cell sequentially, executing point sensing
actions to cover the entire search space. In the multi-agent case, every
agent follows the same trajectory, so the incurred cost is expected to
increase with larger team sizes due to repetitive sensing actions.

6.3 Additional empirical results

We now provide additional empirical results for cost-aware active
search in a 2-dimensional (2D) search space discretized into grids of
sizes 8× 8 and 8× 16 respectively with square cells of width 10m.

2D search space discretized into 8×8 grid cells: Table 6 compares
the total cost incurred in fully recovering β at 2 different sparsity
rates k ∈ {1, 3} with J = 4 agents in an 8 × 8 search space. For
CAST, we varied the tree depth dmax ∈ {2, 3, 4} and the number
of simulation episodes m ∈ {5, 7.5, 10, 20} × 104. Table 6 reports
the results corresponding to the best performing dmax and m in each

case. CAST-1 indicates the performance with one-step lookahead i.e.
dmax = 1 over m = 20×104 episodes to emphasize the importance of
multi-step lookahead over a finite horizon in our cost-aware algorithm.
Figure 4 plots the corresponding full recovery rate across trials as a
function of the total cost incurred. Each agent can choose from 85
region sensing actions over successive time steps. We observe that
CAST outperforms SPATS, RSI and PS by incurring a lower total cost.
RSI being information-optimal and modeling the assumption k = 1
in its hypothesis space is at an advantage in the single target setting.
The stochastic nature of TS based active search in SPATS favours
it in the multi-target setting when sensing is more expensive than
travelling. Exhaustive coverage in PS is comparable only in a single
target setting if travelling is expensive. But in cases that do not match
their most favorable scenarios, all of them exhibit poor cost efficiency.
In contrast, CAST’s ability to perform adaptive lookahead plannning
together with posterior sampling helps it achieve cost efficiency across
single, multi-target and different cost scenarios.

Table 6: Total cost (s) (mean and s.e. over 10 trials) to achieve full
recovery in an 8× 8 grid with J = 4 agents.

Algorithm k cs = 0s cs = 50s

CAST 1 93.10 (12.35) 1268.98 (255.76)
CAST-1 168.83 (12.40) 2125.62 (74.97)
SPATS 238.84 (39.42) 1570.91 (225.71)
RSI 124.24 (13.43) 1321.21 (124.18)
PS 186.61 (51.27) 4887.01 (1330.73)

CAST 3 147.65 (16.11) 2392.21 (142.16)
CAST-1 186.61 (8.13) 2678.65 (176.75)
SPATS 343.25 (44.69) 2454.76 (221.91)
RSI 233.12 (15.25) 2851.48 (182.40)
PS 368.93 (29.92) 9774.93 (843.40)

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

k = 1, cs = 0s

CAST
SPATS
RSI
PS

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

k = 3, cs = 0s

CAST
SPATS
RSI
PS

0 1,000 2,000 3,000 4,000 5,000 6,000

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

k = 1, cs = 50s

CAST
SPATS
RSI
PS

0 1,000 2,000 3,000 4,000 5,000 6,000

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

k = 3, cs = 50s

CAST
SPATS
RSI
PS

Figure 4: Full recovery rate versus total cost incurred in seconds in a
8× 8 grid with J = 4 agents and k targets. Shaded regions indicate
s.e.

2D search space discretized into 8× 16 grid cells: Table 7 com-
pares the total cost incurred in fully recovering β at 2 different sparsity
rates k ∈ {1, 5} with J = 3 agents in an 8 × 16 search space. Fig-
ure 5 plots the corresponding full recovery rate across trials as a
function of the total cost incurred. We fixed the tree depth in CAST
at dmax = 2 and the number of simulation episodes m = 105. Each

agent can choose from 170 region sensing actions over successive
time steps. In almost all the settings, CAST outperforms SPATS, RSI
and PS by choosing cost-aware actions that reduce its total incurred
cost. When sensing is so expensive that traveling cost is negligible
(cs = 50s), especially in the single target setting, we observe that
the information seeking algorithm RSI is at an advantage compared
to the shallow lookahead in CAST. But when travelling is expensive,
even at a lookahead horizon of 2 actions, CAST enables better cost
efficiency than RSI. Moreover, exhaustive coverage in PS also incurs
lower cost compared to SPATS when travelling is expensive, further
indicating the need for cost awareness in active search.

Table 7: Total cost in seconds (mean and s.e. over 10 trials) to achieve
full recovery in an 8× 16 grid with J = 3 agents.

Algorithm k cs = 0s cs = 50s

CAST 1 110.09 (30.48) 2616.90 (213.31)
SPATS 551.74 (120.52) 1931.28 (211.27)
RSI 135.56 (9.96) 1166.69 (84.72)
PS 183.80 (83.04) 7383.20 (2146.24)

CAST 5 258.04 (16.55) 3705.41 (211.81)
SPATS 1010.94 (89.86) 5250.94 (442.07)
RSI 398.01 (8.99) 4243.57 (95.50)
PS 631.80 (34.71) 16472.80 (894.30)

0 200 400 600 800 1,000 1,200

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

k = 1, cs = 0s

CAST
SPATS
RSI
PS

0 200 400 600 800 1,000 1,200

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)
fu

ll
re

co
ve

ry
ra

te

k = 5, cs = 0s

CAST
SPATS
RSI
PS

0 0.2 0.4 0.6 0.8 1

·104

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

k = 1, cs = 50s

CAST
SPATS
RSI
PS

0 0.2 0.4 0.6 0.8 1

·104

0.0

0.2

0.4

0.6

0.8

1.0

Total cost incurred (s)

fu
ll

re
co

ve
ry

ra
te

k = 5, cs = 50s

CAST
SPATS
RSI
PS

Figure 5: Full recovery rate versus total cost incurred in seconds in a
8× 16 grid with J = 3. Shaded regions indicate s.e.

2D search space discretized into 16 × 16 grid cells: Figure 6
shows the full recovery rate against the total cost incurred by J = 8
agents in identifying k ∈ {4, 5, 8, 16} targets in a 16 × 16 search
space. As described in Section 5 and Table 2, the cost efficiency of
CAST is robust to the varying sparsity rate as compared to RSI and
SPATS. The plot for PS is excluded for the subfigure on the right for
better visualization.

Additional visualizations: In the supplementary folder, we are
also including animations from a single trial of each algorithm (for
the same seed i.e. same target distribution) in the 8× 8 search space
with J = 4 agents and k = 3 targets. This helps to understand the
difference in behavior of CAST and the other baselines. We observe
that the sensing actions executed by CAST agents are not only infor-
mation gathering but also cost-aware and adapt to the relative cost of

4 6 8 10 12 14 16

1000

1500

2000

2500

3000

3500

number of targets (k)

to
ta

lc
os

ti
nc

ur
re

d
(s

)

J = 8, cs = 0s

CAST
SPATS
RSI
PS

4 6 8 10 12 14 16
0

5000

10000

15000

20000

25000

30000

35000
·104

number of targets (k)
to

ta
lc

os
ti

nc
ur

re
d

(s
)

J = 8, cs = 50s

CAST
SPATS
RSI
PS

Figure 6: Total cost incurred versus number of targets k ∈
{4, 5, 8, 16} in a 16× 16 grid with J = 8 agents.

travelling versus sensing, thereby outperforming both RSI and SPATS
in terms of the total cost incurred.

6.4 Scaling up CAST

The computational complexity of CAST (Algorithm 1) increases
with the maximum depth of the search tree (dmax) and the size n
of the search vector β ∈ Rn. For a larger n, the size of the action
space being O(n) (considering spatial hierarchical pyramid sensing
actions) implies that the tree policy as well as the new action node
addition policy has to evaluate a larger set of feasible actions at every
belief node encountered during the selection and expansion phase and
this quickly becomes computationally expensive with increasing n.
Moreover, increasing dmax further exacerbates the time complexity
since it expands the space of lookahead action sequences and as a
result, more episodes are required for effective exploration within the
search tree. Additionally, as the tree width increases with completion
of more episodes, it also leads to an increase in the pareto front
computation and update time at each tree node. In what follows, we
describe two heuristic strategies that we implemented to scale CAST
to a 16× 16 search space (results shown in Section 5).

6.4.1 Sampling from actions

In order to select the new action node to be added to the search tree
(Line 20,Algorithm 1), we iterate over all feasible next actions at a
belief node h (denoting the set by Ah) and for each such action a ∈
Ah, we compute the change in entropy of the belief distribution per
unit immediate cost incurred if a were executed. The action a ∈ Ah

that maximizes this quantity is selected and the tree expands to include
the new action node (h, a). This strategy leads to more directed
exploration within the search space than simple random sampling
fromAh. Unfortunately, it becomes computationally expensive as the
size of the action space increases. Therefore, we propose sampling
a subset As

h of size s from the feasible action pool (As
h ⊂ Ah) and

select the action a′ ∈ As
h with the maximum change in entropy

of the belief distribution per unit immediate incurred cost. This not
only reduces the computational cost of CAST, it also introduces
additional stochasticity in the search tree building phase in the multi-
agent setting.

6.4.2 Pruning the tree

In contrast to the progressive widening strategy followed while adding
children action nodes at the interior belief nodes in the search tree
Tt, we observed that CAST performs better when throughout the m
episodes, the root node has as its children all the feasible action nodes
at time step t. Although it helps our CAST-UCT tree policy to balance
exploration-exploitation with the knowledge of the entire feasible

action set, it would not be scalable in terms of the number of episodes
needed as the size of the action space increases. Therefore, we propose
a pruning technique using which we can prune the action nodes at the
root level of Tt after a pre-determined number of simulation episodes
are completed. Note that the particular episodes when we prune the
tree is a tunable hyperparameter that also determines the cost-aware
performance. In order to achieve this, in the backpropagation phase of
each episode, we additionally maintain the upper confidence bound
(UCB) based reward-cost pareto front using the backed up values.
In any episode m′, the 1-step lookahead reward λ− is computed
at a belief node h. We maintain the UCB (rUCB

h) of these rewards
over n(h) episodes using the Student’s t-distribution to compute a
95% confidence interval. ch is the immediate cost of executing the
action that would result in transitioning to belief node h. At the leaf
node hℓ for episode m′, we define the UCB based immediate reward-
cost vector g

′
hℓ

=
[
rUCB
hℓ

−chℓ

]T. To distinguish it from the LCB
based vector gh defined in Section 4.3, we will refer to g

′
h as our UCB

pruning vector. During backpropagation, at each tree node visited in
m′, we update the UCB based lookahead reward-cost pareto-front in
the same way as described for the LCB in Section 4.3. Assuming that
Tt is to be pruned at the m′′-th episode, we remove all those child
actions at the root whose UCB based pareto-front is dominated by the
LCB based pareto-front over all actions at the root. This pruned Tt is
then used over subsequent simulation episodes at time t.

	Introduction
	Related work
	Problem definition
	Our proposed algorithm: CAST
	Background
	Belief representation and reward formulation
	CAST: Cost-Aware Active Search of Sparse Targets

	Results
	2D search space discretized into 1616 grid cells
	Comparison with myopic cost-aware variations of SPATS

	Conclusion
	Belief model for CAST
	Additional implementation details
	Additional empirical results
	Scaling up CAST
	Sampling from actions
	Pruning the tree

