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Abstract. The adoption of Convolutional Neural Networks (CNNs)
in various image classification tasks has led to a recognition of their
inherent biases. This paper introduces a two-step approach to ad-
dress underestimation bias in CNNs, specifically for multi-label im-
age classification. Our focus is within the celebA dataset, known for
gender fairness issues. We begin by defining fairness as an additional
criterion in the CNN model training, adopting a hybrid-optimization
strategy to generate a Pareto set of models, each demonstrating a
different accuracy-fairness trade-off. Initially, we employ a gradient-
based optimizer to train a robust CNN model solely on accuracy, es-
tablishing a strong base model for further refinement. Then, we use
Multi-objective Particle Swarm Optimization (MOPSO) to fine-tune
the weights of the fully connected (FC) layers in the CNN model, in-
creasing emphasis on fairness while leveraging the base model’s ac-
curacy. To manage the complex nature of multi-label classification,
we implement a dynamic weighting scheme to balance accuracy and
fairness. But this presents a new challenge: improving fairness for
one label can unintentionally make it worse for another. To tackle
this, we propose a multi-task learning strategy, assigning each class
label a dedicated FC layer, thus improving task-specific performance
by reducing bias while maintaining adequate overall generalization
accuracy.

1 Introduction

Although CNNs have shown notable success in various image clas-
sification tasks, they often suffer from inherent biases [16]. These bi-
ases emerge as unintended correlations with sensitive attributes, such
as age, gender, and race [18]. This issue usually stems from CNNs
being predominantly fine-tuned for generalization accuracy, inadver-
tently overlooking the possibility of discrepancies in the distribution
of inaccuracies across sensitive groups. This discrepancy impacts
model fairness, particularly in multi-label settings and brings into
question the reliance on accuracy as the sole metric to be optimised.
To address this, we propose a multi-objective approach to mitigate
underestimation bias in multi-label image classification tasks.

Traditionally, CNN models are optimized for generalization ac-
curacy. This optimization is typically done by using backpropaga-
tion in conjunction with gradient-based optimizers such as Adam
[9]. Our method extends this optimization by fine-tuning the FC lay-
ers of the model using MOPSO, simultaneously optimizing for both

accuracy and fairness. Our two-phase approach allows us to main-
tain the emphasis on accuracy while also incorporating fairness into
the optimization process by effectively utilizing both gradient-based
optimization and bio-inspired intelligence. Given the contradicting
nature of these objectives and the complexity of multi-label image
classification, we implement a dynamic weighting strategy to bal-
ance these objectives.

Nonetheless, our initial method exposed a recurring challenge,
where enhancing fairness for one label inadvertently worsened it
for another. To tackle this issue, we employ a multi-task learning
approach, essentially creating a distinct classifier for each class la-
bel via task-specific FC layers while still ensuring parameter sharing
in the hidden layers. With this approach, we significantly enhanced
model performance, reducing underestimation bias without substan-
tially compromising accuracy.

Following this introduction, we provide the background of the is-
sue in section 2, providing an overview of three key areas: fairness
in image labeling, multi-task learning, and multi-objective optimiza-
tion. We begin our exploration by evaluating CNN models on the
celebA dataset to highlight the issue of underestimation bias in sec-
tion 3. Moving on to section 4, we introduce our proposed solution
to the underestimation issue. To test how well our method performs
within multi-label classification settings, we evaluate two strategies:
dynamic weighting and a multi-task approach. We first look at the
drawbacks of dynamic weighting in section 5. After that, we suggest
a potential solution to this drawback using a multi-task approach in
section 6. In the final part of the paper, section 7, we wrap up our dis-
cussion and suggest areas that could be explored in future research.

2 Background

Machine learning (ML) has become an integral part of many indus-
tries, leading to a growing need to understand and mitigate biases in
ML models. With increasing legislation to prevent discrimination in
AI systems, ensuring fairness in ML models is important. This sec-
tion provides an overview of key concepts such as bias in image la-
beling, underestimation bias, multi-task learning, and multi-objective
optimization.



2.1 Bias in Image Labeling

ML has greatly improved image labeling, boosting the accuracy of
image classification based on content. Yet, this progress is not devoid
of challenges, with biases in image classification emerging as one of
the primary issues [18]. Recent studies divide the sources of these
biases into two main categories: data bias and model bias [1].

Data bias comes from the training data used to build ML models.
It’s usually caused by factors like imbalanced sampling, which leads
to overrepresentation or underrepresentation of certain groups, mis-
labeling that results in distorted image representation, and historical
discriminatory practices that have unintentionally shaped the data.

Model bias, in contrast, happens when the learning algorithm ei-
ther exacerbates inherent biases in the training data or creates new
ones. This can be due to limitations in model capacity or uneven re-
sponses to the complexity of the learning problem, which can shift
the model’s focus towards certain data features [1].

2.2 Underestimation Bias

This paper focuses on model bias, especially when the model ampli-
fies pre-existing data bias. This is often referred to as underestimation
bias [7, 1]. It is a scenario where the model tends to underestimate the
likelihood of less frequent outcomes, typically concerning minority
groups, thereby exacerbating the bias already present in the data. We
quantify the difference between what the model predicts and the real
data distribution using an underestimation score, USS=s, which we
calculate for a specific group S [1]:

USS=s ←
P [ŷ = 1|S = s]

P [y = 1|S = s]
(1)

This ratio compares the favorable outcomes predicted by the clas-
sifier for the minority group to the outcomes actually existing in the
data. If S = 0 signifies the minority group, a USS=0 score below 1
indicates that the classifier doesn’t predict enough positive outcomes
for the minority group.

An alternative underestimation score that considers divergences
between the actual and predicted distributions for all groups S is the
underestimation index (UEI) based on the Hellinger distance [7]:

UEI =

√
1−

∑
y,s∈D

√
P [Ŷ = y, S = s]× P [Y = y, S = s]

(2)
Here y and s are the possible values of Y and S respectively.

This Hellinger distance is preferred to KL-divergence because it is
bounded in the range [0,1] and KL-divergence has the potential to
be infinite. UEI = 0 indicates that there is no difference between
the probability distribution of the training samples and the prediction
made by a classifier (no underestimation).

For instance, in a gender image classification scenario, an under-
estimation bias might occur if the model consistently underestimates
the probability of identifying males in certain groups, such as those
with long hair. In this case, UEI can quantify model bias by measur-
ing the deviation of the model’s prediction from the actual distribu-
tion across different groups.

Various strategies have been proposed for mitigating bias in ML in
recent years [12]. These efforts target three stages of the model life
cycle: pre-processing (transforming the dataset to eliminate biases),
in-processing (modifying the algorithm’s loss function to ensure fair-
ness), and post-processing (adjusting model output to guarantee fair-
ness).

Our method incorporates a Multi-Objective Optimization Problem
(MOOP) strategy belonging in the in-processing category. A simi-
lar approach by Wang et al. combines a Relaxed Boundary Adapta-
tion (RBA) strategy with a domain-independent approach [18]. The
RBA strategy uses a process known as a Lagrangian relaxation itera-
tive solver, which adds fairness constraints to the process, while the
domain-independent approach tackles the Non-Discriminatory (ND)
class-domain case specifically to reduce the correlation between
class and domain. While our method aligns with the RBA strategy,
we avoid using the Lagrangian method because it can create non-
convexity when integrating fairness into the loss function. Instead,
we use Multi-Objective Particle Swarm Optimization (MOPSO),
which allows us to explore a range of models representing various
trade-offs between accuracy and fairness, without needing to set a
predetermined optimal fairness threshold.

2.3 Multi-Task Learning

Multi-Task Learning (MTL) is a learning approach that enhances
model performance by leveraging shared information across inter-
connected tasks [19]. MTL mirrors human versatility in managing a
variety of tasks simultaneously and has proven its effectiveness in a
variety of fields, including natural language processing [2] and com-
puter vision [14]. By forming shared representations among tasks,
MTL improves both learning efficiency and prediction accuracy. In
MTL, each class label has its own classifier, which allows the sys-
tem to share common information across tasks while addressing each
task’s specific needs. This makes MTL useful for tackling complex
challenges like ensuring accuracy and fairness in ML models for
multi-label tasks.

The main idea of MTL is to reduce task-specific losses. Each task’s
loss is given a weight, which balances the losses among tasks [17].
These weights ensure that no single task’s loss takes over the learning
process. MTL allows multiple learning tasks to be optimized at once,
bringing out both shared features and unique characteristics across
the tasks.

An MTL model, represented as M , is defined by a set of pa-
rameters θ ∈ Θ. This set includes shared parameters θshared,
which are the weights of layers shared across all tasks T , and task-
specific parameters θt, which are weights for individual tasks. So,
θ = θshared × θ1 × . . .× θT .

Traditional MTL training aims to minimize multiple loss functions
at the same time, with each function related to a different task:

argmin
θ

(L1(θ), . . . , LT (θ)) (3)

The main challenge in standard MTL training is finding the best
model θ that minimizes all T tasks at the same time. This usually
involves a scalarization approach, which combines all elements of
the multi-tasking function into a single loss function. This method
uses task-specific weights wt, which show the relative importance of
each task.

Our method takes a different approach from standard MTL train-
ing. We use MOPSO to individually fine-tune the task-specific layers
while leaving the rest of the weights from the CNN model unchanged
from the initial accuracy-only optimization process. This ensures our
main model keeps shared weights across tasks while maintaining
task-specific output layers. This separate optimization allows for par-
allel processing and removes the need to combine all losses to train
the entire network at once, which is how traditional MTL works.
More details about our approach are discussed in Section 6.



Figure 1: Underestimation scores for various class labels as predicted by a ResNet-50 model pretrained on ImageNet, evaluated on the (test)
CelebA dataset. The figure showcases the correlation learned by the model between gender and certain attributes. Labels like ’Blond Hair’,
’Oval Face’, and ’Rosy Cheeks’ are primarily associated with females, while ’Bald’, ’Chubby’, and ’Double Chin’ are typically linked with
males. Ideally, the underestimation score should approach 1 (indicated by the red line in the figure). The blue and orange bars represent the un-
derestimation scores for females and males respectively. Scores below 1 indicate underestimation, while those above 1 suggest overestimation.

2.4 Multi-objective Optimization

Multi-objective optimization (MOO) focuses on the simultaneous
optimization of multiple, occasionally conflicting, objectives. As
real-world problems often involve multiple criteria, MOO becomes
crucial for finding optimal solutions. In the context of our research,
we use MOPSO to find a balance between accuracy and fairness.
Balancing these objectives entails a trade-off, improving one of these
objectives can sometimes reduce the other.

min
x

(f1(x), f2(x), ..., fm(x)) (4)

The equation above represents a MOOP, where multiple objec-
tive functions need to be optimized at the same time. Ensuring fair-
ness while improving accuracy can be formulated as a MOOP. When
there’s no single solution that is the best for all criteria, Pareto opti-
mality is used to find a set of non-dominated solutions [11]. These
problems are complex, so approximation methods are often used
to solve them. Several techniques, including meta-heuristics like
MOPSO, have been proposed to tackle MOOPs [4, 6].

2.5 Multi-objective Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization algo-
rithm inspired by how birds flock [8]. It tries to optimize an objective
function by first creating possible solutions, then iteratively direct-
ing each particle towards the best solution. The position and velocity
of each particle are updated based on both individual and collective
experiences:

Xt+1
i = Xt

i + V t+1
i (5)

V t+1
i = wV t

i + c1r1(pbest
t
i −Xt

i ) + c2r2(gbest
t −Xt

i ) (6)

MOPSO is a variant of PSO that extends its applicability to
MOOPs. MOPSO uses a global repository to record particles’ expe-
riences and Pareto dominance to determine flight direction [3]. How
the repository is updated and how solutions are kept plays a big role
in creating diverse Pareto fronts.

In the next sections, we detail our proposed method for reducing
underestimation bias in multi-label image classification tasks, using
the concepts explained in this background.

3 Exposing Underestimation Bias: A Deep Dive
into the CelebA Dataset

The CelebA dataset, a large-scale face attributes database with more
than 200,000 celebrity images, each annotated with 40 attribute la-
bels, has become a critical benchmark for evaluating facial recog-
nition algorithms [10]. However, this dataset is also known to ex-
hibit inherent biases, a key concern for ML and more specifically for
CNNs [18].

These biases lead to unequal performance between different demo-
graphic groups. Algorithms trained on the CelebA dataset often have
variable prediction accuracy for different attributes or demographics
[18]. For example, certain genders are under-represented, leading to
lower predictive accuracy for these groups.

We demonstrate this bias by evaluating a ResNet-50 [5] model pre-
trained on the ImageNet dataset [15]. We evaluate its performance on
39 attributes from the Aligned & Cropped subset of CelebA, focusing
on the "Male" attribute as the sensitive feature for fairness evaluation
[10]. We considered 34 out of the 39 attributes in our analysis, based
on having enough validation and test images.



Figure 2: The framework of our two-stage approach for addressing underestimation bias in CNNs using a ResNet-50 base. The initial stage
utilizes a gradient-based optimizer to train the CNN model on accuracy alone, establishing a robust base model. The subsequent stage applies
MOPSO to the FC layers of the model, refining their weights using the validation set only, thus enhancing the model’s fairness and leveraging
the accuracy of the base model.

Figure 3: Comparison between MTL and MOPSO Method for Training MTL Models. Our multi-objective approach independently trains each
task-specific layer in parallel using MOPSO, considering both accuracy and fairness objectives. This approach differs from traditional MTL,
where the loss is aggregated for all task-specific layers. The figure highlights the shift from the traditional MTL approach to our MOPSO
method, showcasing the parallel training of task-specific layers using multi-objective optimization for improved accuracy and fairness in
multi-task learning scenarios.



We set our parameters following the methodology presented by
[18], unless otherwise noted. In the ResNet-50 model, we replace the
FC layers with two successive FC layers, each separated by a dropout
layer and a Rectified Linear Unit (ReLU) activation function. For
training, we use the binary cross-entropy loss with logits, with the
Adam optimizer and a learning rate set at 10−4. Our model is trained
with a batch size of 32 for 50 epochs. We select the best model based
on its performance over all epochs on the validation set.

Figure 1 shows the underestimation score. This score is the ra-
tio between correctly predicted outcomes for the minority group and
their actual representation in the dataset. Ideally, the underestimation
score should be about 1, shown by the red line in the figure. The
blue and orange bars show the underestimation scores for females
and males. Scores below 1 show underestimation, while those above
1 show overestimation.

Figure 1 shows a clear link between certain labels and genders. La-
bels like "Blond Hair", "Oval Face", and "Rosy Cheeks" are mostly
associated with females, while "Bald", "Chubby", and "Double Chin"
are more linked with males. This discrepancy comes from how ML
algorithms are usually trained: they often focus on overall accuracy
without considering the distribution of remaining inaccuracies, espe-
cially when sensitive attributes like race or gender are involved.

Our underestimation concept aims to fix this problem, making
these predictions more aligned with the actual distribution in the
training data. This ensures more reliable prediction accuracy for un-
derrepresented groups, like bald or chubby females, or males with
oval faces or rosy cheeks. In the next section, we’ll explain how our
MOPSO strategy can help mitigate underestimation.

4 Using MOPSO for Mitigating Underestimation
Bias

The central objective of our research, in addressing the issue of un-
derestimation, is to align our predictions more precisely with the ac-
tual attribute distribution present in our training data. In this paper,
we propose a strategy to mitigate underestimation bias by incorporat-
ing underestimation as an additional criterion during the CNN model
training phase.

Including underestimation as an additional constraint within an al-
gorithm’s optimization function can result in a non-convex cost func-
tion. This situation presents considerable challenges for gradient-
based optimizers like Stochastic Gradient Descent (SGD) or Adam,
typically used in CNN training, because of the potential presence
of multiple local minima or saddle points. To overcome these chal-
lenges, we propose a multi-objective optimization strategy that com-
bines the benefits of both MOPSO and gradient-based optimizers like
SGD or Adam.

4.1 Integrating MOPSO and gradient-based optimizer
for CNN training

Bio-inspired evolutionary algorithms such as MOPSO offer strong
exploration capabilities, but they can suffer from computational de-
mands, hyperparameter sensitivity, and scalability issues in large
search spaces. On the other hand, gradient-based optimizers like
SGD and Adam are efficient, but they may struggle with multi-
objective optimization due to the non-convex nature of the problem.

To leverage the strengths of both strategies, we introduce a hy-
brid approach. Initially, we use a gradient-based optimizer to train a
robust CNN model, focusing only on accuracy to generate a strong
base model - this will act as a starting point for MOPSO. Then, we

use MOPSO to fine-tune the weights of the Fully Connected (FC)
layers from the base model only on the validation set. This sequen-
tial approach benefits from the initial model’s accuracy and ensures
a more detailed exploration of the weight space with a focus on fair-
ness. Figure 2 contrasts our innovative hybrid training strategy with
traditional CNN training.

4.2 Overcoming Premature Convergence: A Modified
MOPSO Approach

Our initial experiments with the traditional MOPSO algorithm re-
vealed a tendency towards premature convergence, which can im-
pede the search for global optimum solutions. To address this, we
draw inspiration from the simulated annealing concept, introducing
random Gaussian noise to the position of particles in densely popu-
lated areas in the objective space. This allows us to avoid local op-
tima. If the disturbed particles produce a better solution, they become
the new personal best. Conversely, if the updated solution is worse,
it may still be accepted with a probability of Paccept = 0.5.

Parameter tuning for MOPSO is especially important due to the
balance between exploration and exploitation. Key MOPSO param-
eters include the inertia weight w, and learning factors c1 and c2.
Literature offers detailed analyses to find optimal parameters that
enhance MOPSO’s performance. In our research, the self-adaptive
parameters strategy proposed by Montalvo et al. [13] proved to be
effective. Therefore, we adopted it for setting our parameters. 1

5 MOPSO with Dynamic Weighting
Given the multi-label nature of the CelebA dataset, we employed a
dynamic weighting strategy to aggregate accuracy and fairness met-
rics across target labels. This strategy dynamically assigns weights
that are inversely proportional to the accuracy and fairness associ-
ated with each respective attribute. The principal objective here is to
direct the MOPSO optimization algorithm toward enhancing fairness
across all attributes rather than concentrating solely on those with the
highest UEI score.

Formally, given a datasetD(X,Y, S), wherein X denotes the fea-
ture vector, Y the target label, and S the sensitive attribute, we des-
ignate Ŷ as the prediction output of a modelM(θ,X, S). The opti-
mization problem can then be formally expressed as:

θ = argmin
θ

n∑
i=1

(
wi,u · U(Yi, Ŷi, Si)

)
,
(
−wi,a ·A(Yi, Ŷi)

)
(7)

Where:

• n is the number of class labels
• wi,U and wi,a are weights for the ith class label for UEI and ac-

curacy, respectively
• U(Yi, Ŷi, Si) represents the UEI for the ith class label. We use

UEI as the metric of underestimation to consider all possible com-
binations of class labels and sensitive attributes.

• A(Yi, Ŷi) represents the accuracy for the ith class label
• Yi and Ŷi are the actual and predicted labels for the ith class label,

respectively
• Si is the sensitive attribute for the ith class label

1 The code implementation of our framework is available
on our GitHub page https://github.com/williamblanzeisky/
AddressingBiasinMultiLabelImageClassification.



Figure 4: Evaluation of Different Approaches on Test Set. The red bar represents the results of a ResNet-50 CNN model trained solely on
accuracy using Adam. It reveals the presence of underestimation bias, as indicated by high UEI scores across different labels. The blue bar
represents MOPSO with a dynamic weighting strategy for optimizing both accuracy and fairness. Interestingly, while this approach partially
mitigates underestimation, it unintentionally exacerbates performance issues in other attributes due to the use of weighted averages as objec-
tives. Our MTL approach, represented by the green bar, effectively addresses the underestimation problem by reducing the UEI while managing
a reasonable loss in accuracy ( 5%).

The weights wi,U and wi,a can be defined inversely proportional
to the accuracy and fairness as:

wi,U =
1

A(Yi, Ŷi) + ϵ
, wi,a =

1

U(Yi, Ŷi, Si) + ϵ
(8)

Here, ϵ is a small positive number added to prevent division by
zero. The optimization problem thus involves finding the model pa-
rameters θ that minimize the loss function defined in Eqn. 7.

Although this method assists in reducing the dimension of the op-
timization search space and ensuring equal consideration of all at-
tributes, our findings show that enhancing fairness or accuracy in
one class label can inadvertently undermine performance on other
attributes.

To illustrate this phenomenon, we conduct an experiment using
a ResNet-50-based CNN, initially trained with the Adam optimizer
to optimize for accuracy, using the entirety of the training data. We
then transitioned to a fine-tuning phase, which exclusively refines the
weights of the Fully Connected (FC) layers using MOPSO. This fine-
tuning process optimizes both fairness and accuracy, with the weights
derived from the initial accuracy-optimized training serving as the
starting point for MOPSO’s initial particle generation. Importantly,
the fairness fine-tuning process utilizes only the validation set, which
doesn’t overlap with the training set, thereby enabling a reduction in
training time.

To examine the impact of our framework in mitigating underesti-
mation, we select the model with the lowest UEI from the Pareto set,
tolerating minor losses in accuracy. Figure 4 illustrates this model’s
performance on a separate test set.

Interestingly, while our framework succeeds in somewhat fixing
overall underestimation, it can unintentionally worsen the perfor-
mance of the other attributes. This inadvertent consequence arises
due to the use of weighted averages as the optimization objectives.
This issue is more evident in attributes such as "Big Lips," where
the initial UEI was significantly higher. This approach model excels
at mitigating this, driving the UEI towards zero, but in doing so, it
inadvertently escalates the UEIs for other attributes such as "Bald",
"Oval Face", and "Gray Hair", all of which commenced with lower
UEIs.

This problem gets worse and the number of attributes increases.
With an expanding attribute set, the value tends to saturate when av-
erages are used to aggregate the scores, or each attribute’s contribu-
tion to the mean decreases. This situation underscores the necessity
for a more sophisticated approach that accommodates the complex
interplay of accuracy, fairness, and the diverse nature of attributes in
multi-label datasets.

In response to this issue, we propose an alternative approach
that employs multi-task learning. In the following section, we will
demonstrate how this strategy can alleviate this problem.

6 Multi-task Learning: A Decoupled Approach
Understanding the multi-label character of the CelebA dataset, we
propose a multi-task learning strategy that allocates a unique classi-
fier for each attribute. In simpler terms, each task has its own sepa-
rate section of the model that focuses on learning and predicting that
specific category. By doing so, we can enhance the model’s ability
to accurately predict each label because it can learn from its specific



task without being influenced by others. In essence, this method aims
to separate the performance of individual attributes, promoting inde-
pendent optimization.

We hypothesize that such separation could potentially fix the
"whack-a-mole" problem encountered in the dynamic weighting ap-
proach. Unlike the previous approach detailed in equation 7, each
task-specific layer optimizes both accuracy and UEI for its corre-
sponding attribute. Thus, attribute-specific weights are independently
calculated, reflecting the performance of their respective classifiers.
This independent optimization helps strike a better balance between
fairness and accuracy for each attribute and the model overall.

Typical multi-task learning involves combining losses from each
output neuron, followed by backpropagation step, usually using
gradient-based optimizers like Adam or SGD. This technique enables
parameter sharing in hidden layers across all tasks, while dedicating
the final FC layer for task-specific objectives, fostering specializa-
tion for each task. In alignment with our strategy outlined in Sec-
tion 4.1, we take a step further by employing MOPSO to fine-tune
the weights of task-specific layers. Our focus remains on optimiz-
ing for both accuracy and fairness. To preserve parameter sharing,
we keep the weights of the initial CNN model, which was optimized
for accuracy, unchanged. This unique optimization during the fine-
tuning phase enables parallel processing and eliminates the need to
combine all losses for entire network training at once. Moreover, the
fine-tuning phase uses the validation set only.

This approach allows for the optimization of each attribute’s accu-
racy and fairness independently, thereby providing a potentially more
balanced solution to the underestimation issue. In fact, as shown in
Figure 4, our multi-task learning strategy effectively mitigates un-
derestimation while maintaining reasonable generalization accuracy
(with a 5% drop), compared to the dynamic weighting method.

7 Conclusion
In this study, we present a multi-objective strategy to reduce under-
estimation bias in Convolutional Neural Networks (CNNs), with a
focus on multi-label image classification tasks. We include under-
estimation as an additional objective in the CNN training process.
To achieve an optimal balance between the accuracy and fairness
of the multi-label task, we employ a dynamic weighting strategy.
However, we encountered a problem—termed the "whack-a-mole"
issue—where enhancing fairness for one label inadvertently com-
promises it for another. To solve this, we implemented an MTL ap-
proach, assigning a unique layer in the network to each class label.
This allows us to fine-tune the performance of each label indepen-
dently, mitigating the impact of the "whack-a-mole" problem. Our
MTL approach demonstrated significant progress, substantially re-
ducing underestimation bias while preserving adequate generaliza-
tion accuracy.
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