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Abstract. TOPSIS, a popular method for ranking alternatives based
on aggregated distances to ideal and anti-ideal points, was considered
to be different from widely acknowledged ‘utility-based methods’,
which build rankings from weight-averaged utility values. Nonethe-
less, TOPSIS has recently been shown to be a natural generaliza-
tion of ‘utility-based methods’ on the grounds that the distances it
uses can be decomposed into so-called weight-scaled means (WM)
and weight-scaled standard deviations (WSD) of utilities. However,
in the standard TOPSIS procedure, the balance that these two com-
ponents exert on the final ranking cannot be influenced in any way.
Building on our previous results, in this paper we put forward modifi-
cations that relate TOPSIS aggregations to WM and WSD, achieving
well-interpretable control over how the rankings are influenced by
WM and WSD. The modifications constitute thus a natural general-
ization of standard TOPSIS. The generalized TOPSIS may turn into
the original TOPSIS or, otherwise, may trade off WM for WSD or
WSD for WM. In the latter case, TOPSIS can even be turned into a
regular utility-based method. All in all, we believe that the proposed
generalizations constitute an interesting practical tool for influencing
the ranking by controlled application of a new form of the decision
maker’s preferences.

1 Introduction

Multi-Criteria Decision Support Systems (MCDSS) assist decision
makers in solving problems that analyze and process real-world ob-
jects (alternatives) evaluated on multiple, often conflicting attributes
(criteria). What is often referred to as MCDA (Multi-Criteria Deci-
sion Aid) is a subfield of MCDSS concerned with, specifically, se-
lecting the preferred objects, assigning them to preference classes
(called sorting), or ranking them; for an extended overview of MCDA
techniques, models, and frameworks, see e.g., [3, 4, 5, 11, 15].
Among methods solving the task of ranking alternatives from the
most preferred to the least preferred, a commonly chosen one is
TOPSIS (Technique for Order Preference by Similarity to Ideal So-
lution) [14]. This popular approach operates on the principle of dis-
tances to ideal and anti-ideal alternatives. The calculated distances
are later processed using an aggregation function, referred to as the
‘relative closeness’, that naturally renders a final ranking of alter-
natives. In this respect, TOPSIS from its early beginning diverged
from the ‘utility-based methods’, i.e. methods that build their rank-
ings from the weight-averaged values of utility, e.g. the SAW method
[14] or the UTA family of methods [16, 17]. This seemingly irrecon-
cilable difference had been retained till papers [25, 24] showed that
the distances to the ideal and anti-ideal points may be decomposed
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into what is referred to as the weight-scaled mean (WM) and weight-
scaled standard deviation (WSD) of utilities. Under the assumption
of linearity of utility functions used in ‘utility-based methods’, the
introduced relation establishes a fairly clear reconciliation of TOP-
SIS and these methods: by considering the standard deviation of the
utilities apart from their mean, TOPSIS may from now on be con-
sidered their natural generalization. Notice however, that the effect
of WM and WSD on the final ranking built by the classic TOPSIS is
fixed and thus cannot be in any way influenced. To address that issue,
this paper attempts to generalize TOPSIS so that the impact of WM
and WSD on the final ranking is influenced by the decision maker.
This might be deeply useful in designing new, non-standard aggre-
gations, including such that will be either more or less dependent on
WSD than the original ones.

The paper is organized as follows. First, Section 2 recalls our re-
cently proposed formalization of the internal logic of TOPSIS (in-
cluding the decomposition of distances into WM and WSD). On
these grounds, Section 3 puts forward the generalizations of TOP-
SIS based on redesigning its aggregations. In particular, it shows ex-
emplary aggregations that lead TOPSIS closer and closer to ‘utility-
based methods’. Moreover, it discusses potentially troublesome ver-
sions of aggregations that must be avoided as counter-intuitive. Sec-
tion 4 elaborates on the selected methodological adaptations of TOP-
SIS that can be found in the literature to point out how our general-
izations differ from the existing approaches. The paper ends with
conclusions and topics of future investigation1.

2 Formalization of the Workings of TOPSIS with
the WMSD-space

In our recent papers ([24, 25]) the inner workings of TOPSIS have
been formalized by the introduction of two coefficients:the weight-
scaled mean (WM) and the weight-scaled standard deviation (WSD)
of utilities. These coefficients may be used to reproduce the distances
to ideal and anti-ideal and thus to fully determine the method’s re-
sults. By considering the exhaustive set of all possible criterion val-
ues and following the transformations that are applied to these values
in the two initial steps of TOPSIS (normalization and weighting), the
space of all possible values of WM and WSD (the WMSD-space) is
formally defined.

The following subsections briefly recall the subsequent steps of
this formalization, which constitutes the basis for putting forward
the elliptic generalizations of TOPSIS. Notably, it differs from typi-
cal TOPSIS-related studies in that, given a set of criteria, it does not

1 The page constrains regarding this publication make it immensely difficult
to include all-inclusive examples of notions introduced and discussed here.
Therefore we provide supplementary materials, in which a comprehensive
case study using a real-life data set is presented.



consider any particular set of alternatives (as, e.g., in Fig. 1A) but,
instead, deals with spaces (i.e. exhaustive sets) of alternatives. As a
result, TOPSIS and the proposed generalization shall never be con-
sidered with respect to a particular dataset, but always with respect
to the following, consecutive spaces: criterion space: CS (codomain
space of the original criteria), utility space: US (re-scaled criterion
space), weighted utility space: V S (utility space after application
of criterion weights) and, finally, the WMSD-space (weighted util-
ity space after application of weight-scaled mean and weight-scaled
standard deviation).

2.1 Criteria and the CS space

The attributes used in TOPSIS are assumed to have codomains that
are real-valued intervals ordered according to a preference relation
in a (weakly) monotonic fashion. Such attributes are referred to as
criteria. The set of all possible criteria will be denoted by K.

The codomain of a criterion K ∈ K is thus an interval V bounded
by two values: the least preferred (denoted by v∗) and the most pre-
ferred (denoted by v∗). Of course, criteria may differ in their v∗
and v∗ values, as well as in preference types. In particular, crite-
rion K ∈ K is referred to as of type ‘gain’ when its codomain is
V = [v∗, v

∗] and the preference of v ∈ V does not decrease with the
increase of v. Analogously, for type ‘cost’, the criterion’s codomain
is V = [v∗, v∗] and the preference of v ∈ V does not increase with
the increase of v.

Assume a subset K selected from K, where |K | = n ≥ 1, and
consider the criterion space CS, i.e. the set of all possible vectors
[v1, v2, ..., vn] such that vj ∈ Vj , where Vj for j ∈ {1, 2, ..., n} is
the codomain of criterion Kj ∈ K The criterion space CS is thus
an n-dimensional hyperrectangle V1×V2× ...×Vn with 2n vertices
of the form [s1, s2, ..., sn], where sj ∈ {vj∗, v∗j } (Fig. 1B).

In particular, CS contains two vertices: [v∗1 , v∗2 , ..., v∗n], further de-
noted by I and referred to as the ideal point, and [v1∗, v2∗, ..., vn∗],
further denoted by A and referred to as the anti-ideal point. For more
details on the criterion space and its characteristics see [25, 24].

2.2 Utility functions and the US space

Unfortunately, simultaneous analyses of sets of criteria with differing
intervals and differing types are not very convenient. Therefore, [25]
applied a simple transformation of a criterion by what will be referred
to as a (linear) utility function U : V → [0, 1]: U(v) = v−v∗

v∗−v∗

for v ∈ [v∗, v
∗] (type of criterion: gain) and U(v) = v∗−v

v∗−v∗ for
v ∈ [v∗, v∗] (type of criterion: cost).

Notice that while the original criteria may have different codomain
intervals and different types, the utility-transformed criteria (or: util-
ities) will all have the same interval ([0, 1]) and the same type (gain).

Assume |K | = n ≥ 1, and consider the utility space US intro-
duced in [25], which is the set of all possible vectors [u1, u2, ..., un]
such that uj ∈ [0, 1] for j ∈ {1, 2, ..., n}. The utility space US is
thus an n-dimensional hypercube [0, 1]× [0, 1]× ...× [0, 1] with 2n

vertices of the form [z1, z2, ..., zn], where zj ∈ {0, 1}.
In particular, US contains vectors 1 = [1(1), 1(2), ..., 1(n)] and

0 = [0(1), 0(2), ..., 0(n)], which are the respective images of I and A
from CS (see Fig. 1C).

2.3 Criterion weights and the V S space

The recalled utility space assumed that all of the criteria are equally
important, which, practically is a rather rare case. The criteria are

very often assigned different weights by experts, to distinguish be-
tween less and more influential criteria. Thus, after [24], a formaliza-
tion of criteria weighting is recalled and presented.

In the following, all weights are assumed to be non-negative, with
their sum being positive (this excludes the situation in which all
weights are zero). The weights are always re-scaled by their maxi-
mum, which is thus always possible and produces weights included
in [0, 1]. Such weights will be further referred to as admissible crite-
rion weights and implied everywhere below.

Assume |K | = n ≥ 1, and consider the vector w =
[w1, w2, ..., wn] of admissible criterion weights. The assumptions
ensure that ∀n

j=1wj ≥ 0 and maxn
j=1wj = 1.

The chosen vector of weights, w, determines the value of what will
be defined as s = ∥w∥

mean(w)
. Again, the assumptions concerning the

weights imply that∥w∥ > 0 and mean(w) > 0, in result of which s
always exists (because the denominator is non-zero) and never equals
zero (because the nominator is non-zero).

Given u ∈ US (a representation of a potential alternative in terms
of utilities) and w (a vector of weights), define V S = {v : v =
u ◦ w,u ∈ US,w ∈ WS}, where ◦ is the Hadamard (element-
wise) product of vectors.

Clearly, V S ⊆ US, with V S = US only for w = 1 (in all other
cases V S ⊂ US). Additionally, while US is an n-dimensional hy-
percube, V S is a np-dimensional hyperrectangle, where 1 ≤ np =
|{i : wi > 0}| ≤ n. In particular, V S contains 0 (the image of
0 ∈ US) and w (the image of 1 ∈ US). They constitute the end-
points of the segment that will be referred to as the main diagonal of
VS and denoted by Dw

0 (see Fig. 1D).

2.4 WM, WSD and the WMSD-space

Given two (column) vectors a and b ̸= 0, define [20]:

• vector a↘b = a·b
∥b∥2b, the projection of a onto b,

• vector a↗b = a− a↘b, the rejection of a from b.

Notice that ∥b∥ ≠ 0 is guaranteed by b ̸= 0, so the projection
always exists, and this means that also the rejection always exists.
By definition, vectors a↘b and a↗b are orthogonal. The notions
of projections/rejections are illustrated in VS (see Fig. 2A).

Now, recall that s = ∥w∥
mean(w)

for any weight vector w. Given any
v = u ◦w ∈ V S define after [24]:

• mean01
w (v) = ∥v↘w∥

s
, which will be referred to as the weight-

scaled mean (shortly: WM) of v,
• std01w (v) = ∥v↗w∥

s
, which will be referred to as the weight-scaled

standard deviation2 (shortly: WSD) of v.

Notice that mean01
w (v) and std01w (v) always exist, which is guar-

anteed by the existence of v ↘w and v ↗w and by the fact that
s ̸= 0. Moreover, mean01

w (0) = 0 and mean01
w (w) = mean(w)

(mean01
w (v) behaves like the arithmetic mean), whereas std01w (0) =

0 and std01w (w) = 0 (std01w (v) behaves unlike the standard devia-
tion3).

The weight-scaled mean (WM) and the weight-scaled standard de-
viation (WSD) were used in [24] to define the following space:

2 While weight-scaled mean is just another name for the weighted arithmetic
mean, weight-scaled standard deviation is a coefficient in some respect dif-
ferent from, but functionally analogous to the weighted standard deviation.

3 This feature clearly differentiates std01w (WSD) and std (standard devia-
tion), because for every admissible w ̸= 1 std01w = 0, while std(w) ̸= 0.
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Figure 1: Schematic representation of an exemplary alternative o1: (A) in the set of alternatives, (B) in the space (exhaustive set)
of alternatives, (C) as a point u = [0.75, 0.50] in the utility space US , (D) as a point v = [0.75, 0.25] in the weighted utility space VS

for w = [1.0, 0.5]. Shades of blue indicate D1
0 : the diagonal of US (C), and Dw

0 : the diagonal of V S (D).

Definition 1 (WMSD-space).

WMSD-space = {[mean01
w (v), std01w (v)]|v ∈ V S}.

The WMSD-space can be represented in 2D space, wherein the
weight-scaled mean (WM) of the alternatives is presented on the x-
axis and the weight-scaled standard deviation (WSD) of the alterna-
tives on the y-axis. As a result, the WMSD-space can always be de-
picted in two dimensions because it is by definition two-dimensional
(or one-dimensional when np = 1). This property will be used to
visualize alternatives and values of TOPSIS aggregation functions in
the WMSD-space.

It is also worth noticing that the number of non-zero criteria, np,
and the specific values of their weights (i.e. the size and the values
of w) affect the number of vertices determining the WMSD-space
boundary (Fig. 3). In particular, the leftmost and rightmost vertices
of the WMSD-space (vectors [0, 0] and [mean(w), 0]), are the re-
spective images of 0 and w from V S. Consequently, the (lower)
segment connecting those vertices is the image of Dw

0 from V S.

2.5 Distance calculation and the IA-WMSD Property
in VS

The maximal Euclidean distance in VS is equal to the length of Dw
0 ,

which extends between vectors 0 and w (Fig. 1D). This maximal
distance equals ∥w∥, which makes it heavily dependent on w. To
make the maximal distance in VS independent of at least some char-
acteristics of w, define the re-scaled weighted Euclidean distance,
δ01w (a,b) = δ2(a,b)

s
, where δ2(a,b) is the Euclidean distance be-

tween vectors a and b, while s = ∥w∥
mean(w)

.
Now, given v ∈ VS , notice the role of Dw

0 in relating mean01
w (v)

and std01w (v): mean01
w (v) specifies how far away v is from 0 when

measured along Dw
0 , while std01w (v) specifies how far away v is

from Dw
0 when measured along a direction that is perpendicular to

it. More formally, let v = v↘w. In this case:

• δ01w (v,0) = mean01
w (v),

• δ01w (v,w) = mean(w)−mean01
w (v),

• δ01w (v,v) = std01w (v).

What is important, because v = w ◦ u and because for w = 1
s =

√
n, it may be shown that: mean01

1 (v) = mean(u) and
std011 (v) = std(u), which means that mean01

w (v) and std01w (v)
constitute natural generalizations of mean(u) and std(u).

All of the abovementioned considerations allowed to formulate
in [24] what is referred to as the IA-WMSD property, relating dis-
tances δ01w (v,0) and δ01w (v,w) to WM and WSD.

Definition 2 (IA-WMSD Property). Given w, for every v ∈ VS :

δ01w (v,0) =
√

mean01
w (v)2 + std01w (v)2,

δ01w (v,w) =

√(
mean(w)−mean01

w (v)
)2

+ std01w (v)2.

2.6 The IA-WMSD Property in WMSD-space and
TOPSIS aggregations

Although the IA-WMSD property holds in V S for any number of
criteria n, it can be naturally visualized in VS only for n ≤ 3 (see
Fig. 2A, where n = 2). On the other hand, because WMSD-space is a
purposefully constructed image of V S, the IA-WMSD property can
be naturally visualized in WMSD-space for any n (Fig. 2B). Thus,
WMSD-space can visualize alternatives and functions used to ag-
gregate the alternative’s distances to the ideal and anti-ideal points,
regardless of the considered number of criteria.

The three classic aggregation functions in TOPSIS are founded on:
the distance to the ideal point (aggregation denoted by I), the distance
to the anti-ideal point (aggregation denoted by A), or both, as is the
case of the ‘relative closeness’ (aggregation denoted by R).

For any v ∈ V S the considered aggregations defined in terms of
δ01w (v,1) and δ01u (v,0) are as follows:

Iw(v) = 1− δ01w (v,w)

mean(w)
, Aw(v) =

δ01w (v,0)

mean(w)
,

Rw(v) =
δ01w (v,0)

δ01w (v,0) + δ01w (v,w)
.

Using the negation (‘1 − ...’) in Iw(v) serves only to unify its type
with that of Aw(v) and Rw(v) (now all three types are gain). Addi-
tionally, using the division by mean(w) in Iw(v) and Aw(v) serves
only to unify their codomains with that of Rw(v) (now all three
codomains are [0, 1]).

It should be noted that the aggregation primarily used in TOPSIS,
i.e. Rw(v), is a ‘composite’ of Iw(v) and Aw(v), and thus inherits
its main properties from them. For this reason, all three aggregations
are described and examined ‘in parallel’ throughout [25, 24], and
also in this paper.
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Figure 2: An illustration of the IA-WMSD property for w = [1.0, 0.5] and exemplary v = [0.75, 0.25]: (A) in VS , (B) in WMSD-space.
The illustration shows how the re-scaled lengths δ01w of vectors v and v − v determine the values of the weight-scaled mean (WM)

and the weight-scaled standard deviation (WSD).

Figure 3: Visualizations of WMSD-space for n criteria, each with three combinations of weights (w), depicted by different line types:
(A) n = 3, (B) n = 4. Because the x-axis is the image of Dw

0 (the diagonal of V S, determined by w), the horizontal sizes of WMSD-spaces
equal mean(w). The light gray line on each subplot corresponds to w = 1, outlining the MSD-space (the special case of WMSD-space).

Finally, using the IA-WMSD Property it is possible to express all
the aggregations in terms of mean01

w (v) and std01w (v) instead of
δ01w (v,1) and δ01u (v,0).

All the introduced notions allow us to easily visualize aggregations
in the WMSD-space (the dimensionality of which never exceeds 2):
each point in WMSD-space represents an (actual or potential) alter-
native, while its colour expresses the value of the considered aggre-
gation (see Fig. 4). Thanks to the unifications applied in the formulae
of the aggregations, all three aggregations can be consistently visu-
alized with a single colour map.

Notice that because Iw(v) and Aw(v) are basically defined as a
distance from a predefined point, their isolines in V S constitute con-
centric hyperspheres around w and 0, respectively (none of which
could easily be visualized for n > 3). Owing to the specific construc-
tion of WMSD-space though, the isolines of the aggregations reduce
to two-dimensional curves. In particular, the isolines of Iw(v) and
Aw(v) are simply concentric circles centred in [mean(w), 0] and
[0, 0], respectively, while the isolines of the ‘composite’ Rw(v) are
two groups of arch-like curves ‘centred’ in [mean(w), 0] and [0, 0].
These curves are circle-like close to their centres, but straighten up
towards the middle of the WMSD-space (see Fig. 4). The ‘midpoint’
isoline is a straight vertical line.

The visualization of the isolines together with the IA-WMSD
property reveals the behaviour of WM and WSD under the different
aggregations of TOPSIS (Table 1).

The utilization of WSD by TOPSIS will be referred to as the key

Table 1: The relation between mean01
w (v) (WM) and std01w (v)

(WSD) for the analyzed aggregation functions.

aggregation mean01
w (v) std01w (v)

Iw(v) gain cost

Aw(v) gain gain

Rw(v) gain
mean01

w (v) <
mean(w)

2
: gain

mean01
w (v) =

mean(w)
2

: neutrality
mean01

w (v) >
mean(w)

2
: cost

feature of TOPSIS, which (unlike methods that consider only the util-
ity mean) explicitly considers both the mean (precisely, its variant:
WM) as well as the standard deviation (precisely, its variant: WSD)
of the utility. Knowing these characteristics of the aggregations, the
decision maker may opt for constructing a very specific aggregation
for the underlying task and thus better utilize the whole method.

3 Generalizations of TOPSIS
Having laid the foundations in [25, 24], where it was shown that
TOPSIS constitutes a natural generalization of ‘utility-based meth-
ods’, it is possible to move one step further in this paper and put
forward a natural generalization of TOPSIS itself. This generaliza-
tion will specifically concern the influence of WM and WSD on the
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Figure 4: An exemplary point v = [0.75, 0.25] depicted in WMSD-space defined by w = [1.0, 0.5] for aggregations: (A) Iw(v), (B) Aw(v),
(C) Rw(v). Colours encode the aggregation values, with blue representing the least preferred, while red the most preferred ones.

final ranking and will enable controlling their trade-off within this
ranking, a feature that is conspicuously absent in the classic version
of the method. Because TOPSIS does not differ significantly from
the ‘utility-based methods’ in terms of the ranking producing mech-
anism4, the generalization will actually provide a tool for shifting
TOPSIS away or towards the ‘utility-based methods’.

3.1 Circular aggregations

Thanks to being planar in WMSD-space, the isolines of the aggre-
gations may be expressed in the WMSD-space as unary functions of
the form WSD(WM) (see Fig. 5 for a visualization of the isolines).
If i, a, r ∈ (0, 1) are to represent the values of aggregations Iw(v),
Aw(v) and Rw(v), respectively, then the formulae of these functions
are as follows:

• for Iw(v):
WSD(WM) =

√
(mean(w)(1− i))2 − (mean(w)− WM)2,

• for Aw(v): WSD(WM) =
√

(mean(w)a)2 − WM2,
• for Rw(v):

WSD(WM) =
√

(WM−mean(w)r)(WM−2WMr+mean(w)r)
2r−1

.

Notice that while the formulae in the case of Iw(v) and Aw(v) sim-
ply express centred circles (precisely: semicircles, because the square
root is non-negative), which are defined for every i, a ∈ (0, 1), the
formula in the case of ‘composite’ aggregation Rw(v) expresses a
more sophisticated curve that is only defined for r ∈ (0, 1

2
)∪ ( 1

2
, 1).

However, both for r → 1
2

− as well as r → 1
2

+ the shape of the curve
converges to a vertical line WM = mean(w)

2
, which thus constitutes

the isoline for r = 1
2

, where the WSD is thus neutral (neither gain
nor cost), as marked in Table 1.

For obvious reasons, the name circular will be applied to aggrega-
tions Iw(v), Aw(v) and, for consistency, also to aggregation Rw(v).

3.2 Elliptic aggregations

As the ‘composite’ aggregation Rw(v) is based on Iw(v) and
Aw(v), focus on the latter two. Isolines of these aggregations have
the form of (differently centred) circles. Now, because a natural gen-
eralization of a circle is an ellipse, the undertaken approach to gener-
alizing Iw(v) and Aw(v) was to redesign their isolines from circles

4 Other differences exist, regarding, however, mainly the procedures of gener-
ating utility functions. These may be quite complex with the ‘utility-based
methods’; e.g. methods of the UTA family utilize intricate instances of
mathematical programming to turn pieces of explicit preference informa-
tion (provided by the decision maker) into the final form of the utility func-
tions. The simplest of the ‘utility-based methods’ seems to be the SAW
method, in which the utility functions are assumed to be linear (as such,
SAW may be thus viewed as the ‘utility-based method’ closest to TOPSIS).

to ellipses. This was implemented by introducing into their formulae
a scaling coefficient (denoted by ϵ):

• for Iw(v):
WSD(WM) = ϵ·

√
(mean(w)(1− i))2 − (mean(w)− WM)2,

• for Aw(v): WSD(WM) = ϵ ·
√

(mean(w)a)2 − WM2,
• for Rw(v):

WSD(WM) = ϵ ·
√

(WM−mean(w)r)(WM−2WMr+mean(w)r)
2r−1

.

Aggregations generalized in this way, denoted by Iϵw(v) and Aϵ
w(v),

will have isolines in the form of ellipses and thus will be referred
to as elliptic. For consistency, the same name will be applied to the
‘composite’ aggregation, denoted as Rϵ

w(v), despite the fact that its
isolines are different from ellipses.

While the allowed range of ϵ is (0,+∞), its neutral value is 1,
with ϵ > 1 promoting WM over WSD, and ϵ < 1 promoting WSD
over WM (because ϵ ̸= 1 affects all three aggregations, to keep [0, 1]
as their actual ranges, additional re-scaling has to be applied). Natu-
rally, when ϵ = 1, the elliptic aggregations reduce to circular ones, as
presented in Fig. 5. On the other hand, when WM is promoted over
WSD, the resulting ellipses become elongated vertically, as depicted
in Fig. 6, while when WSD is promoted over WM, the resulting el-
lipses become elongated horizontally, as in Fig. 7.

Thanks to the visualization of the isolines a decision-maker can
swiftly compare the considered aggregations and choose one in an
informed manner. For example, in classic TOPSIS under the Iw(v)
aggregation, an alternative’s rating (expressed by the value of the ag-
gregation) increases with the decrease of the weight-scaled standard
deviation (provided that WM kept unchanged); see Fig. 5 and Ta-
ble 1. Making the ellipsis more and more vertical (i.e. when ϵ > 1
and grows) as in Fig. 6, decreases the influence of WSD, so it be-
comes easier to influence the rating of alternatives by changing the
WM rather then WSD. A reverse case can be observed for an ellipsis
elongated horizontally, as in Fig. 7.

It should be also kept in mind that even though ϵ ∈ (0,+∞),
with aggregations Iϵw(v) and Aϵ

w(v) ϵ should in practice satisfy
ϵ ∈ (L,+∞), where L ∈ (0, 1) is the lower limit for ϵ. This limit
guarantees that (for ϵ > L) the following ‘maximality/minimality
property’ holds in the WMSD-space:
• the minimal value of the aggregation is achieved only for [0, 0],
• the maximal value of the aggregation is achieved only for

[mean(w), 0].
Notice that the ‘maximality/minimality property’ of aggregations
in the WMSD-space is fully analogous to the so-called ‘maximal-
ity/minimality property’ of confirmation measures introduced in
[10], elaborated in [12] and visualized in [23].

As a consequence of violating the ‘maximality/minimality prop-
erty’ in the WMSD-space one gets aggregations with seemingly dis-
placed reference points (see Fig. 8), which are counter-intuitive for
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Figure 5: WMSD-space defined by w = [1.0, 0.6, 0.5] depicted against circular aggregations: (A) Iw(v), (B) Aw(v) (C) Rw(v)
(equivalent to the corresponding elliptic aggregations for ϵ = 1).

Figure 6: WMSD-space defined by w = [1.0, 0.6, 0.5] depicted against elliptic aggregations for ϵ = 1.85: (A) Iϵw(v), (B) Aϵ
w(v), (C) Rϵ

w(v).

Figure 7: WMSD-space defined by w = [1.0, 0.6, 0.5] depicted against elliptic aggregations for ϵ = 0.68: (A) Iϵw(v), (B) Aϵ
w(v), (C) Rϵ

w(v).

decision makers. To see this, consider the first reference point, i.e.
the ideal point (fully analogous reasoning concerns the anti-ideal
point), defined as the vertex [v∗1 , v

∗
2 , ..., v

∗
n] ∈ CS and character-

ized by maximal value of WM = mean(w) and by minimal value
of WSD = 0 in WMSD-space. In classic TOPSIS this point also
happens to be characterized by the only maximum value of every ag-
gregation. Now, making an aggregation exhibit maxima in any other
point of the WMSD-space seemingly displaces the ideal point in CS
and thus severely undermines the method’s interpretability and ex-
plainability. A case of this troublesome phenomenon is exemplified
in Fig. 8B where, as a result of using ϵ < L (which caused the iso-
lines to be ‘too horizontal’), the maximum of Aϵ

w(v) moved to the
top of the WMSD-space, seemingly displacing the ideal point. The
concerning the anti-ideal point is illustrated in Fig. 8A.

Given Iϵw(v) or Aϵ
w(v), the specific value of L depends on the

shape of the WMSD-space which, in turn, depends on w (L is
thus a function L(G,w) of the aggregation G and the weights
w). Values of L can be established analytically5, but also nu-
merically. For instance, L(Aϵ

w(v), [1, 1, 1]) = 0.6325, because
for ϵ ≤ 0.6325 the ‘minimum/maximum property’ is violated
(i.e. for ϵ = 0.6325 the maximal value of Aϵ

w(v) is attained in
both [1, 0] and [0.6667, 0.4714], while for ϵ < 0.6325 only in

5 Analytic derivation and discussion of the formula for L(G,w) is impossi-
ble in view of the page constraints regarding this publication.

[0.6667, 0.4714]). As far as weight vectors used in this paper are
concerned, L(Aϵ

w, [1.0, 0.5]) = 0.6667 (see the WMSD-space de-
picted in Figs 2 and 4), while L(Aϵ

w, [1.0, 0.6, 0.5]) = 0.6767 (see
the WMSD-space depicted in Figs 5–9).

Fortunately, owing to its particular construction, aggregation
Rϵ
w(v) is free from the risk of not satisfying the maximal-

ity/minimality property, which means that with Rϵ
w(v) the property

holds for every ϵ ∈ (0,+∞).
Summarizing, by incorporating ϵ in their formulae, the new, ellip-

tic aggregations produce natural generalizations of TOPSIS. These
generalizations may be specialized in two particular ways.

• For ϵ = 1, all the elliptic aggregations reduce to circular aggrega-
tions (with Iϵw(v) and Aϵ

w(v) producing circles instead of ellipses,
as in Fig. 5). This simply illustrates the fact that Iw(v), Aw(v)
and Rw(v) constitute special cases of Iϵw(v), Aϵ

w(v) and Rϵ
w(v),

respectively.
• For ϵ → +∞, all the elliptic aggregations converge to one that

in practice considers only WM (ellipses of Iϵw(v) and Aϵ
w(v) are

elongated vertically to their extremes, the same effect concerns
the shapes of Rϵ

w(v)), producing ‘increasingly vertical’ isolines.
In limit (ϵ = +∞) this is equivalent to employing a very specific,
new aggregation: Mw(v) = mean01

w (v), which is depicted in
Fig. 9. Observe that Mw(v) constitutes a common special case of
Iϵw(v), Aϵ

w(v) and Rϵ
w(v).
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Figure 8: WMSD-space defined by w = [1.0, 0.6, 0.5] depicted against elliptic aggregations for ϵ = 0.33 < L with clear violations of the
‘minimum/maximum property: (A) Iϵw(v) (maximum at [0.4333, 0.3500] instead of [0.7, 0.0]), (B) Aϵ

w(v) (minimum at [0.2667, 0.3500]
instead of [0.0, 0.0]).

As it turns out, Mw(v) is additionally completely equivalent to a ver-
sion of ‘relative closeness’ in which the Euclidean distance measure
is replaced with the Manhattan distance measure. This situation is es-
pecially interesting because TOPSIS with this particular aggregation
loses its key feature (i.e. taking into account the standard deviation
of the utilities) and, as far as the ranking-producing mechanism is
concerned, starts behaving exactly like the ‘utility-based methods’.

Otherwise, e.g. for allowed values of ϵ < ∞, Iϵw(v), Aϵ
w(v) and

Rϵ
w(v) allow for a better control over trade-off between WM and

WSD in the resulting rankings than Iw(v), Aw(v) and Rw(v).

Figure 9: WMSD-space defined by w = [1.0, 0.6, 0.5] depicted
against aggregation Mw(v) = mean01

w (v). Notice its full
independence of WSD.

4 Related Works
There are very many different aspects of TOPSIS that have so far
been addressed and described (from assorted ingenious adaptations,
e.g. [1, 18], to more or less serious issues with the method, e.g.
the so-called rank-reversal problem6, [6, 19]), which certainly can-
not be covered in this short review. For a fairly broad review of
TOPSIS-based methodologies, especially its applications, see e.g.
[2, 28, 31, 21]. Consequently, the following brief list of TOPSIS-
related papers will be confined only to those papers that describe
selected methodological adaptations of TOPSIS, in particular its ex-
tensions and generalizations.

A very popular type of generalization concerns the form of the
input data to the method. The most prominent here are the interval
and fuzzy extensions, the latter being numerous enough to merit their
own surveys, e.g. [22], which reviews the development of the fuzzy
paradigm in TOPSIS, explores the method’s different variants within
this paradigm and presents multiple real-life applications.

A similar kind of generalization concerns the form of the prefer-
ential information that is to be taken into account by the method to
control its behavior. Even though TOPSIS does not originally admit

6 The problem does not afflict the versions of TOPSIS presented in this paper.

any parameters to be controlled by explicit preferential information,
this is exactly what has been implemented in [30], where preference-
ordered pairs of alternatives are passed to TOPSIS. In this adaptation
of the method the Euclidean distance measure is replaced with a com-
bination of the Manhattan and the Chebyshev distance measures, and
explicit preferential information is used to construct such a version of
this combination that will generate rankings compatible with the pro-
vided information. The distance measures constitute a natural segue
to other papers in which the measure itself was generalized. First of
all, the Minkowski distance measure is a natural generalization of
the Euclidean distance measure, which in [27] is assumed to be stan-
dard within TOPSIS, although several other distance measures are
also suggested. Two other papers with alternative distance measures
are: [26], where the Euclidean measure was replaced with the Maha-
lanobis measure (allowing for correlated criteria), and [9], where the
Euclidean measure was replaced with what is referred to as the GDM
measure (allowing for mixed-codomain criteria).

Finally, some developments of TOPSIS were aimed towards adapt-
ing the method to solving different MCDA problems, in particular
sorting. A good example of this is described in [7, 8], where the
TOPSIS-based methodology was applied to assigning alternatives to
pre-defined quality classes.

5 Conclusions and Future Works

Although numerous modifications and adaptations of TOPSIS have
been proposed, none of them fully explains the differences between
this method and the ‘utility-based methods’, in particular the dif-
ferences concerning their ranking-producing mechanisms. This pa-
per fills this gap by exploiting the WMSD-space and observing that
in this space the isolines of two classic aggregations are circular.
As such, the aggregations have natural, elliptic generalizations. The
formal introduction of such elliptic, properly parametrized aggrega-
tions, proved to produce a meaningful and useful tool for shifting
TOPSIS towards or away from the ‘utility-based methods’, a ploy
that greatly enhances interpretation of the method’s final results.

Further investigations may include combining the introduced el-
liptic generalizations of TOPSIS with other generalizations and ex-
tensions to the method, concerning e.g. fuzzy data on input, explicit
preferential information, alternate distance measures, or solving the
problem of sorting instead of ranking. Although TOPSIS has already
been adapted to all those problems, the methodology used in those
adaptations strictly follows that of classic TOPSIS. This means that
the adaptations equipped with the generalized aggregations might
have considerable functionality and novelty value.
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Supplementary material
To show the usability of the proposed generalizations of TOPSIS and
illustrate the practical implications of ϵ, let us consider a simple case
study based on the real-world dataset used by [13, 29, 25]. The orig-
inal data describes the technical condition of 32 buses, however, for
the sake of brevity, in this paper we shall focus only on a subset of
ten buses (Table 2). The denotation of the alternatives is kept as in
the full dataset in [25] to facilitate comparison with previous papers.
Each alternative is described by eight numeric criteria referring to
its technical condition. All the criteria are assumed to be equally im-
portant (w = 1 = [1, 1, 1, 1, 1, 1, 1, 1]), with four of them being of
type ‘gain’ (‘Speed’, ‘Pressure’, ‘Torque’, ‘Horsepower’) and four
of type ‘cost’ (‘Blacking in exhaust gas’, ‘Summer/Winter fuel con-
sumption’, ‘Oil consumption’). For more detailed description of the
dataset see [25].

The alternatives are represented in CS (Table 2), US and V S
(Table 37), WMSD-space and in terms of four aggregations: Rϵ

w(v)
(three renditions) and Mw(v) (Table 4). The WMSD-space based
values are used to depict the alternatives as points, first individually
(Fig. 10), and then against the aggregations (Figs. 11–14).

In the conducted case study the classic TOPSIS aggregation
Rw(v), with circular isolines (equivalent to Rϵ

w(v), an elliptic ag-
gregation characterized by ϵ = 1; see Fig. 11) was compared with:
• an elliptic aggregation promoting WSD over WM, i.e. character-

ized by ϵ = 0.4 < 1 (see Fig. 12),
• an elliptic aggregation promoting WM over WSD, i.e. character-

ized by ϵ = 2.3 > 1 (see Fig. 13),
• the Mw(v) aggregation, in which only WM is taken into account,

characterized by the ‘in limit’ situation: ϵ = +∞ (see Fig. 14).
First, notice that the shape of the WMSD-space as well as the po-
sition of the points (alternatives) within the space is identical in all
visualizations. It is due to the fact that these aspects are influenced
by the particular weights of the criteria and the particular descrip-
tions of alternatives. The ϵ parameter, on the other hand, influences
the aggregations or, more precisely, shape of their isolines, changing
them from circular ones (Fig. 11) to horizontally elongated ellipses
(Fig. 12) on one hand, or through vertically elongated ones (Fig. 13)
to straight vertical lines (Fig. 14), on the other. Because the final
rating of an alternative is directly influenced by the shape of these
isolines, the ϵ parameter has a direct impact on the position of the
alternative in the final ranking.

Let us now have a closer look at how the ratings of the considered
alternatives react to the different aggregations. First of all, b24 is the
undisputed winner under all four considered aggregations, as it has
unrivaled values of WM (almost maximum) and WSD (low enough).

Next, consider alternatives b07 and b26, that lie close to each
other within the WMSD-space. This is clear after the weighted util-
ities (representation in V S) of both alternatives are compared, be-
cause they are fairly similar. The small differences lead to b26 having
slightly smaller WM, but slightly larger WSD (this results from the
fact that the weighted utilities of b26 are more ‘dispersed’ than those
of b07). As such, b26 would be ranked below b07 by all the ‘utility-
based methods’ (which take only WM into account). This, however,
is not the case with TOPSIS, which does not rate alternatives by their
WM, but by their distances to the ideal and anti-ideal points. This
rating, however, has been shown ([25, 24]) to be dependent not only
on WM, but also on WSD (the ‘key feature’ of TOPSIS).

7 Notice that V S = US owing to w = 1, so the table shows both.

In result, TOPSIS in its classic version (i.e. under aggregation
Rw(v)) ranks b26 higher than b07. The generalized version of TOP-
SIS (i.e. under aggregation Rϵ

w(v)) described in this paper allows to
control the influence of WM and WSD, effectively shifting the be-
haviour of TOPSIS away or towards that of the ‘utility-based meth-
ods’ (with full agreement achieved under Rϵ

w(v) for ϵ → +∞).
As already stated, in the case of Rw(v) (circular aggregation) b26

is rated higher than b07 (resulting in the higher rank of b26). This
advantage of b26 clearly intensifies in the case of Rϵ=0.4

w (v) (ellip-
tic aggregation, promoting WSD), in which the influence of WSD
on the result is further increased. Of course, the situation gradually
reverses with aggregations promoting WM over WSD. In particular,
in the case of Rϵ=2.3

w (v) (elliptic aggregation, promoting WM) b07

and b26 are ranked equal, while in the case of Mw(v)) (WM only) it
is b07 that is higher in the ranking than b26.

A very similar situation concerns alternatives b18 and b25, which
differ in both WM and WSD by 0.01 (exactly the same holds for
b07 and b26), but the four aggregations rank alternatives b18 and
b25 differently than alternatives b07 and b26: b18 is ranked lower
than b25 by Rϵ=0.4

w (v), while higher by Rϵ=1.0
w (v), Rϵ=2.3

w (v) and
Mw(v). This is due to the fact that the influence of WM and WSD
differs in different regions of WMSD-space and pair b18 and b25 is
located in a different region of WMSD-space than pair b07 and b26.

Differences in how the aggregations rank alternatives occur also
when the values of WM or the values of WSD of these alternatives
are identical. This again emphasizes the difference between classic
TOPSIS and the ‘utility-based methods’ (as opposed to the general-
ized TOPSIS, in which the difference may be arbitrarily decreased).

Consider alternatives b16 and b18, which are characterized by the
same WM = 0.88 and different WSD. Since WM = 0.88 >
mean(w)

2
= 0.5, the higher the value of WSD, the lower the ranking

of an alternative under Rϵ=1
w (v) (recall the relation between WM and

WSD in Table 1). Thus, b16 is ranked higher than b18. Furthermore,
the fact that the alternatives have the same WM also implies that
there is no such an ϵ that could place b18 higher in the ranking than
b16. Nonetheless, b18 and b16 can be ranked equally under Mw(v),
as it is independent of WSD and ranks according to WM only.

Analogous consideration can be made for alternatives b15 and
b22, which are characterized by WM = 0.45 < 0.5. In this case,
however, the higher the WSD, the higher the ranking position under
Rϵ=1
w (v). Thus, b15 is ranked higher than b22. Choosing any allowed

ϵ cannot reverse this ranking. However, for ϵ = ∞ (i.e. for Mw(v)),
the two alternatives can be ranked equally (this ranking is consistent
with that of the ‘utility-based methods’).

Now, let us consider two alternatives that have the same WSD, but
different WM: b03 and b14. As shown in Table 1, the higher the WM,
the better ranking position under the Rw(v). Since b14 has higher
WM than b03, it is higher in the ranking. This does not change under
different considered values of ϵ, see Figs. 11–14 (again, this ranking
is consistent with that of the ‘utility-based methods’).

Finally, consider alternative b03, which lies in the middle of the
WSD-space, on the vertical isoline of Rw(v) and of Rϵ

w(v). This iso-
line is the only one that does not change its shape under any change
to ϵ in Rϵ

w(v) (it always remains vertical). In the case of all such
alternatives, TOPSIS (both classic, as well as generalized) behaves
exactly as the ‘utility-based methods’, ranking them all as equal.
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Table 2: Description of chosen alternatives in terms of criteria (elements of CS)

Specifications
Bus Speed Pressure Blacking Torque Summer Winter Oil HP

b03 72 2 73 425 23 27 2 112
b07 90 2 26 482 22 24 0 148
b14 75 2 64 432 22 25 1 114
b15 68 2 70 400 22 26 2 100
b16 88 2 44 478 21 25 0 138
b18 90 2 40 480 22 25 0 139
b22 68 2 88 422 22 25 3 108
b24 90 2 38 482 20 24 0 146
b25 90 2 45 479 21 25 1 145
b26 90 2 34 486 21 25 0 148

Table 3: Description of chosen alternatives in terms of weighted utilities (elements of V S)

Specifications
Bus Speed Pressure Blacking Torque Summer Winter Oil HP

b03 0.40 1.00 0.32 0.29 0.57 0.60 0.50 0.31
b07 1.00 1.00 1.00 0.95 0.71 0.90 1.00 1.00
b14 0.50 1.00 0.45 0.37 0.71 0.80 0.75 0.35
b15 0.27 1.00 0.36 0.00 0.71 0.70 0.50 0.08
b16 0.93 1.00 0.74 0.91 0.86 0.80 1.00 0.81
b18 1.00 1.00 0.80 0.93 0.71 0.80 1.00 0.83
b22 0.27 1.00 0.10 0.26 0.71 0.80 0.25 0.23
b24 1.00 1.00 0.83 0.95 1.00 0.90 1.00 0.96
b25 1.00 1.00 0.72 0.92 0.86 0.80 0.75 0.94
b26 1.00 1.00 0.88 1.00 0.86 0.80 1.00 1.00

Figure 10: The WMSD-space defined by w = 1 with points representing the alternatives.

Table 4: Description of chosen alternatives in terms of WM and WSD (elements of WMSD) and four aggregations

WMSD-space Aggregations
Bus WM WSD Rϵ=1

w (v) Rϵ=0.4
w (v) Rϵ=2.3

w (v) Mw(v)

b03 0.50 0.22 0.500 0.500 0.500 0.500
b07 0.95 0.09 0.903 0.818 0.932 0.950
b14 0.62 0.22 0.600 0.558 0.616 0.620
b15 0.45 0.32 0.465 0.485 0.454 0.450
b16 0.88 0.09 0.855 0.789 0.875 0.880
b18 0.88 0.11 0.845 0.764 0.872 0.880
b22 0.45 0.31 0.464 0.484 0.453 0.450
b24 0.96 0.06 0.930 0.870 0.953 0.960
b25 0.87 0.10 0.842 0.771 0.864 0.870
b26 0.94 0.08 0.904 0.830 0.932 0.940
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Figure 11: The WMSD-space defined by w = 1 with points representing the alternatives
against elliptic aggregation Rϵ

w(v) for ϵ = 1 (equivalent to circular aggregation Rw(v), i.e. classic TOPSIS aggregation).

Figure 12: The WMSD-space defined by w = 1 with points representing the alternatives
against elliptic aggregation Rϵ

w(v) for ϵ = 0.4 (i.e. aggregation promoting WSD over WM).

Figure 13: The WMSD-space defined by w = 1 with points representing the alternatives
against elliptic aggregation Rϵ

w(v) for ϵ = 2.3 (i.e. aggregation promoting WM over WSD).
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Figure 14: The WMSD-space defined by w = 1 with points representing the alternatives
against aggregation Mw(v) (i.e. aggregation fully independent of WSD).
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