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CONTEXT AND MOTIVATIONS. The use of Multi-Criteria Deci-
sion Making (MCDM) is widespread across a wide range of indus-
tries. MCDM techniques support decision makers in dealing with
complex real-world issues by, among others, assessing and ranking
alternatives described by multiple criteria. From variety of MCDM
methods tackling the task of ranking alternatives from the most pre-
ferred to the least preferred, a commonly chosen approach is TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution) [1].
TOPSIS calculates distances between the considered alternatives and
two predefined ones, namely the ideal and the anti-ideal, and creates
a ranking of the alternatives according to a chosen aggregation of
these distances. Over the decades, numerous versions and modifica-
tions of the method have been proposed, leaving, however, its core
based on calculating and aggregating distances unchanged.

The bulk of the research on TOPSIS is focused on practical use
cases and different ways of criteria weighting and normalization,
lacking attempts to formally describe the systematic relations be-
tween the properties of alternatives and the effects of aggregations.
As a result, aggregations are compared on a use case basis rather
than globally, i.e. with respect to the space of all possible alterna-
tives. Finally, no approaches exist that are capable of visualizing such
general, dataset-independent properties of aggregations. Below, we
briefly present our recent paper [2] that has addressed those issues
by formalizing and visualizing the inner workings of TOPSIS.

DATASET-INDEPENDENT ANALYSES. The input data for the
method is represented in a m × n matrix of values, usually called
a decision matrix, with m being the number of considered alterna-
tives and n the number of criteria characterizing each alternative.
An exemplary decision matrix X containing four alternatives (stu-
dents) described by three criteria (final grades obtained in three sub-
jects) is depicted in Fig. 1A. The data in the decision matrix usually
undergo some normalization and weighting first. Next, TOPSIS de-
termines two reference points: ideal and anti-ideal, and calculates
distances from each alternative’s representation to one or to both
of those points. Finally, the alternatives are ranked according to an
assumed function that aggregates distances between the alternatives
and the reference points.

To ensure most general, i.e dataset-independent, analyses of TOP-
SIS, our approach does not focus on any particular decision matrix,
but considers sets of all possible alternative representations, defining
them as three consecutive spaces, i.e. exhaustive sets (Fig. 1): criteria
space (domain space of the original alternatives), utility space (re-
scaled criteria space to unify the intervals and the preference types of
all criteria), and MSD-space (newly proposed space).

Within this presentation, we assume no additional criteria normal-
ization and no criteria weighting.
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TOPSIS AGGREGATIONS IN MSD-SPACE. To measure the dis-
tance of an alternative’s representation u in the utility space to the
ideal point (denoted as 1) or the anti-ideal point (0) we use a re-
scaled Euclidean distance (δ012 (·)) that is simply a Euclidean distance
divided by

√
n, to make the maximal distance n-independent. This

ensures that our results and visualizations are easily comparable re-
gardless of the number of criteria. The three commonly considered
aggregations are denoted by I, A and R, standing for the distance to
the ideal point, distance to the anti-ideal point, and the relative dis-
tance, respectively. They are defined as:

I(u) = 1− δ012 (u,1), A(u) = δ012 (u,0),

R(u) =
δ012 (u,0)

δ012 (u,1) + δ012 (u,0)
.

Let u = [mean(u),mean(u), ...,mean(u)] be the vector con-
sisting of repeated alternative’s mean. Employing the fact that for
every u ∈ US vectors u − 0 and u − u as well as u − u and
1− u are orthogonal, one can apply the Pythagorean theorem to re-
late these vectors (Fig. 2A). Moreover, as shown in our work [2],
the lengths of the above-mentioned vectors can be expressed as fol-
lows: δ012 (u,0) = mean(u); δ012 (u,1) = 1 − mean(u) and
δ012 (u,u) = std(u). These characteristics of US allowed us to for-
mulate the IA-MSD property.

Definition 1 (IA-MSD Property).

δ012 (u,0) =
√

mean(u)2 + std(u)2,

δ012 (u,1) =
√

(1−mean(u))2 + std(u)2.

This interesting dependency between the distances of an alternative
to the ideal and anti-ideal points, inspired us to introduce a new space
called MSD-space, which uses the alternatives’ means (M) and stan-
dard deviations (SD) as its coordinates (see Figs 1D; 2B,C) .

Definition 2 (MSD). MSD-space ={[mean(u), std(u)]|u ∈ US}.

Given any u ∈ US, the IA-MSD property makes it possible to ex-
press all the aggregations with mean(u) and std(u):

I(u) = 1−
√

(1−mean(u))2 + std(u)2,

A(u) =
√

mean(u)2 + std(u)2,

R(u) =

√
mean(u)2 + std(u)2√

(1−mean(u))2 + std(u)2+
√

mean(u)2 + std(u)2
.

As a result, each point in MSD-space representing a particular alter-
native can be color-coded with respect to the values of a particular
aggregation function (see Fig. 2C for aggregation R(u)). This allows
swift visual analysis and comparison of different aggregations: e.g.,
identification of the isoline characteristics, possible to obtain values,
position of reference points.



Figure 1. A schematic representation of alternatives in different spaces. (A) The original dataset (decision matrix) describing four students (alternatives) using
final grades in three subjects (criteria). (B) The alternatives depicted as a subset of the criteria space, i.e., the space of all possible alternatives within the given
criteria. (C) The alternatives presented as a subset of utility space, the re-scaled equivalent of criteria space. (D) The alternatives represented in the MSD-space,
defined by the mean and standard deviation of the utilities assigned to the alternatives.

Figure 2. A depiction of the IA-MSD Property in US and MSD-space for a 3D data. (A) Vector orthogonality and the IA-MSD Property in US. (B) Vector
orthogonality and the IA-MSD Property in MSD-space. The re-scaled δ012 lengths of vectors u and u − u in (A) correspond to mean(u) and std(u) in (B).
(C) Color encoding of the aggregation R(u), with blue representing the least preferred and red the most preferred values.

EXEMPLARY APPLICATION. Trade-offs between mean(u) and
std(u) summarized in Table 1 and visualized in Fig. 2(C) show how
carefully designed changes to the criteria may positively influence
the final result. For example, under R(u), with mean(u) > 0.5, an
alternative can improve its rating just by lowering its standard de-
viation of utilities, even when the mean remains unchanged. This is
clearly demonstrated by isolines of R(u) and may be additionally
exemplified as follows.

The alternative depicted as the point in Fig. 2 is described by
[0.50, 0.75, 0.85] in US (A) and [0.70, 0.15] in MSD-space (B,C).
To increase its rating, one may simply increase the value of one utility
while retaining the values of all the other ones (effectively increasing
their mean). But such a ploy may be not easy, and only increasing
one utility while decreasing another (enough to preserve the mean)
may prove possible. Notice that methods that rate alternatives by the
mean of utilities will not change their results after such ‘compen-
satory’ modifications to the utilities. TOPSIS, however, will update
its rating even then: after 0.5 is increased to 0.6, while 0.85 is de-
creased to 0.75, the mean stays the same (0.70), but the standard
deviation drops from 0.15 to 0.07. In result, the point moves straight
down, towards higher isolines of R(u) (see Fig. 2(B,C)). Since the
standard deviation is of type ‘cost’ for mean(u) > 0.5 (see Table 1),
the rating of the alternative actually grows.

Note that the effect could be opposite in other regions the MSD-
space, so opposite modifications to the utilities (i.e. ones that actually
increase the standard deviation) might be required.

Table 1. Preference-related interplay of mean(u) and std(u)

aggregation mean(u) std(u)

I(u) gain cost

A(u) gain gain

R(u) gain
mean(u) < 0.5: gain
mean(u) = 0.5: neutrality
mean(u) > 0.5: cost

CONCLUSIONS. Investigating the algebraic, dataset-independent as-
pects of TOPSIS, we have demonstrated that the alternative’s ratings
calculated as their distances to ideal and anti-ideal points can be ac-
tually expressed with the mean value (mean(u)) and the standard
deviation (std(u)) of their utilities. The two easily interpretable fea-
tures directly influence the final results, and provide a 2D space that
can be productively visualized. The space is thus a practical tool that
can be used to: inform decision makers about the properties of alter-
natives, highlight the consequences of using particular aggregation,
and potentially suggest actions that will improve alternatives’ ratings.
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