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Abstract. Bilevel multi-objective optimization is a field of math-
ematical programming representing a nested hierarchical decision-
making process, with one or more decision-makers at each level.
These problems appear in many practical applications, solving tasks
such as optimal control, process optimization, development of gov-
ernment and game strategy, and transportation. Uncertainty cannot
be ignored in these practical problems. We present a hybrid algo-
rithm called BAMBINO, based on the batch Bayesian approach via
expected hypervolume improvement, that can handle uncertainty at
the upper level. Three popular modified benchmark problems with
multiple dimensions, and one real-world example from the field of
environmental economics are used to evaluate the performance. The
real-world example is a decision-making problem between a govern-
mental authority and a gold mining company. The experimental re-
sults under the objective noise compared with two popular algorithms
in the literature. The results show that BAMBINO is computationally
efficient and capable of handling upper-level objective uncertainty
while approximating the Pareto-optimal front. We also evaluate the
effect of batch size on performance.

1 Introduction

Hierarchical decision-making has an extensive history, in Game The-
ory as first realized by von Stackelberg [23] and in the subfield of
mathematical programming called bilevel optimization [3]. A bilevel
optimization problem contains a nested inner optimization problem
which is a constraint of an outer optimization problem. The outer
optimization task is referred to as the upper level or leader while
the inner optimization problem is referred to as the lower level or
follower. Existing bilevel research has focused mainly on single-
objective leaders and followers. Multi-objective bilevel optimization
is relatively neglected, but there is work in the fields of classical op-
timization [11] and evolutionary computation [15].

Our work focuses on the special case of multi-objective bilevel
problems in which the leader has noisy objectives. We assume that
the follower is free to choose any feasible solution from a Pareto-
optimal set. We use batch Bayesian optimization to improve effi-
ciency, approximating the leader’s Pareto-optimal front using fewer
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function evaluations than existing works. We also present a black-
box approach to the noisy leader’s objectives for handling the uncer-
tainty during decision-making.

Hierarchical decision-making under uncertainty with noisy objec-
tives becomes more interesting in a bilevel structure. The follower
can observe the leader’s decisions, but the leader may have no idea
how the follower is going to respond. Previously observed decisions
are therefore important. Uncertainty in the objective also complicates
the leader’s decision-making, and our algorithm uses a specifically
designed acquisition function called gNEHVI to maximize expected
hypervolume improvement under noisy objectives. We call our al-
gorithm BAMBINO (Bayesian Approach for Multiobjective Bilevel
Problems with Noisy Objectives). To evaluate its performance, we
consider three multi-dimensional test problems from two different
suites of multi-objective bilevel optimization problems. Also, one
environmental economics problem which is a decision-making prob-
lem between an authority and a gold mining company. All examples
illustrate the importance of taking uncertainty into account.

Most studies in the multi-objective bilevel optimization literature
focus on solving the optimization problem without addressing the
impact of uncertainty. In practical problems, noise in the leader’s ob-
jectives might represent environmental uncertainty, for example, in a
meta-learning regime [1] that can be mathematically formulated as
bilevel programming [13]. As another example, a government might
need to prevent terrorist attacks using information from unreliable
sources. Yet another example occurs in computing optimal recov-
ery policies for financial markets [18], using bilevel optimization
with objective uncertainties caused by several uncontrollable param-
eters. Bilevel optimization problems are computationally expensive
to solve because of their nested structure, and they become even more
complex when there are multiple objectives and uncertainty (possi-
bly at both levels). The main purpose of our work is to improve the
efficiency of solving multi-objective bilevel optimization while han-
dling leader objective uncertainties.

2 Background

We now provide some necessary background.
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Figure 1. Decision making under upper-level uncertainty.

2.1 Bilevel Multi-objective Optimization Problems
(BMOP).

Because of the nature of multi-objective optimization problems, only
Pareto-optimal solutions at the lower level can be considered as fea-
sible solutions for the upper-level problem. We denote the decision
variables at the upper level by z,, € X, C R"™ and the decision vari-
ables at the lower level by x; € X; C R™. The lower-level problem
is solved with respect to x; while the upper-level problem is solved
with respect to both decisions = (., 2;). Each x,, corresponds to
a different lower-level optimization problem with a different Pareto-
optimal front decision set. The lower level Pareto-optimal front is de-
fined as P* = {f(xu,x1) : x; € Xy, Px; € X;} st f(2)) = f(x)
where f(z') = f(z) denotes f(z") dominates f(z). The Pareto-
optimal decision set is X; = {x] : f(Xu,%]) € P*}. The defini-
tion of a bilevel multi-objective problem with vector-valued decision
variables x,, and x; is given by
minimize Fi (Xu, X1), .., Fp(Xu, X1)

Xy, X]

subject to

x; € argmin{fl(xu,xl), vy Jq(Xu, X1); (1

x|
95 (Xu,x1) <0, j = 172,.,,,J}
Gk(Xu,Xl) SO, k:1,27...,K

where F : R™ x R™ — RP represents the upper level function
and f : R™ x R™ — RY represents the lower level function of the
bilevel problem. Upper level and lower level constraints are defined
by G : Xu x X; > Randg; : Xy x X; > Rfork=1,...,K
andj=1,...,J.

2.2 Bayesian Optimization (BO).

BO is a sample-efficient approach that has demonstrated great poten-
tial in approximating a global optimum with a relatively small num-
ber of function evaluations. It uses a probabilistic surrogate model
to make decisions by balancing exploration and exploitation [20].
Gaussian process (GP) is a common surrogate model with a flexi-
ble and non-parametric form. GP provides a posterior distribution
for a decision point x in the search space by capturing the prior be-
lief about the performance of the unknown objective function, using

Algorithm 1 BAMBINO

Inputs: Fy (X, %) : Xu € Xu,x1 € X,
Batch points in each iteration Q,

The number of iterations for BO: N,
Reference point

1: x; : Find the Best Lower Level response as parameters with
NSGA-II algorithm,
2: Initial decision data set with the objective noise
D = xu;, Fu(Xu,;,x1;), (3:)]_, withsize of n,
3: Initialize the GP model with the observations and the objective
noise
: fori=0:Ndo
Suggest new g-batch points by optimizing gNEHVI
forj=0:qdo
For each upper-level decision x,,, find optimal x; by apply-
ing the NSGA-II
Calculate fitness scores with noise Fy, (x4, X; ) + &
9: end for
10:  Update the data set D with new observations
11: end for
2: Return Pareto-optimal front F;, and (x4, X])
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a mean function p(x) and a kernel function k(x;,x;). BO uses an
acquisition function to decide which point to choose next. The acqui-
sition function specifies the value of the next point by using the sur-
rogate’s predictive distribution at the current point. We assume that
the black-box function f is expensive to evaluate, but that optimizing
the acquisition function is relatively cheap and fast.

Multi-objective Bayesian optimization (MOBO) combines the
Bayesian surrogate model and an acquisition function specifically
designed for multi-objective optimization problems such as gNEHVI
[6]. This is a hypervolume improvement-based acquisition function
that works well for noisy multi-objective optimization problems.

3 Method

We consider a case that is crucial in practice, in which the leader must
make decisions under uncertainty based on noisy observations F; =
f(xu,,x1;)+& where & ~ N(0,%;) and X; is the noise covariance
and x,,x; are upper and lower decision variables respectively. We
reformulate the leader’s objective with noisy observations as

minimize{ F1 (Xy, X1) + &1, vy Fi(Xu, x1) + &} 2)

Xu»X]
where &; ~ N (0, 3;). The hypervolume indicator measures the vol-
ume of space between the non-dominated front and a reference point,
which we assume is known by the upper-level decision-maker. The
selection of reference points is tricky. In this work, it is chosen to be
an extreme point of the Pareto front, because reference points should
be dominated by all Pareto-optimal solutions.

Hypervolume improvement of a set of points P’ is defined as
HVI(P'|P,r) = HV(PUP'|r) — HV(P|r) where P represents
the Pareto front and r the reference point. Given observations of the
upper-level decision-making process, the GP surrogate model pro-
vides us with a posterior distribution over the upper-level function
values for each observation. These values can be used to compute
the expected hypervolume improvement acquisition function defined
by

Qehvi(Xu|P) = E[HVI(F.|P)] 3)

So the expected hypervolume improvement iterates over the posterior
distribution, an approach that worked well in [6].
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Figure 2. An illustration of the dominated (red) and non-dominated (white) space. The green and blue area on the graphs represents the hypervolume
improvement of the new points.

After n observations of the leader’s decisions and the follower’s
response, the posterior distribution can be defined by the condi-
tional probability p(F (X, , X1, )|Dx) of the leader’s objective val-
ues given decision variables (x4, , X;,,) based on noisy observations
Dn = Xu;, Fi(xu;, x1;), (Xi);—,. NEHVI is defined as

ongm(xa) = / Qe (x| Pa)p(F| Dy )dF @

where P, denotes the Pareto-optimal front optimal decision set over
the leader’s objectives F',,. The aim is to improve the efficiency of
the optimization, and the handling of noise in the leader’s objective,
by using the approach above and reformulating the bilevel multi-
objective optimization problem. The algorithm details can be found
in Algorithm 1.

4 Experiments

The test problems are selected from the literature [10], with the aim
of testing scalability in terms of decision variable dimensionality.
The results are compared with state-of-art evolutionary algorithms
m-BLEAQ [21] and H-BLEMO [8]. The Pareto-optimal front is in-
dependent of the parameters. Also, we use a real-world problem from
environmental economics literature which considers a hierarchical
decision-making problem between an authority and a gold mining
company [22].

Performance Metrics. We compare our results in terms of upper-

level function evaluations (FE) to determine the efficiency of the
algorithm as Bayesian optimization aims to minimize the function
evaluations while optimizing the expensive black-box functions. Hy-
pervolume improvement (HV) [12] and inverted generational dis-
tance (IGD) [5] is also used to evaluate the success of approximation
to Pareto-optimal fronts, in terms of convergence and diversity. HV
measures the volume of the space between the non-dominated front
obtained and a reference point. IGD calculates the sum of the dis-
tances from each point of the true Pareto-optimal front to the nearest
point of the non-dominated set found by the algorithm. Therefore,
a smaller IGD value means approximated points are closer to the
Pareto-optimal front of the problem.

Parameters. We fixed the number of Bayesian optimization itera-
tions to N = 50 and repeated our experiments 21 times to obtain me-
dian results for making the comparison fair. We use the independent

GP model with Matern52 kernel and fit the GP by maximizing the
marginal log-likelihood. The method is initialized with 2 x (d + 1)
Sobol points where d represents the dimension of the problem to
construct the initial GP model. All experiments are conducted us-
ing the BoTorch [2] library. We solved the follower’s problem with
the popular non-dominated sorted genetic algorithm (NSGA-II) [7]
and choose the population size 100 and number of generations 200.
We choose the follower’s decisions from the obtained Pareto-optimal
front at random, as all solutions in the Pareto-optimal front are feasi-
ble.

4.1 Test Problems

Example 1. The first example is a bi-objective problem that is
scalable in terms of the number of follower decision variables. We
choose K = 14 and K = 19, giving 15 and 20 follower vari-
ables respectively, with 1 leader decision variable. We choose the
reference point required to measure hypervolume improvement to be
(1.0,0.5). The Pareto-optimal decision sets for this specific bilevel
decision-making problem can be found in [21].

Example 2. The second test problem is the modified test problem

with 10 and 20 variable instances. We choose the required reference
point to be (1.1, 1.1). The Pareto-optimal front for a given leader is
defined as a circle of radius (14 ) with centre ((1+7), (1+7)). We
choose K = 5 for our experiments with parameters r = 0.1,7 = 1
and o = 1, following [21] so that our results can be compared with
those for m-BLEAQ and H-BLEMO.

Example 3. The third test problem is the modified test problem
with 10 and 20 variable instances. We choose the required reference
point (0.8, 0.0) for measuring the hypervolume improvement during
the optimization. Details on the Pareto-optimal solutions are given in

[9].

4.1.1 Results of Test Problems

The performance of BAMBINO is compared with that of
m-BLEAQ and H-BLEMO in Table 2, showing computa-
tional expense and convergence. The FE is calculated by
Ninitiat + (Nbaten X Niter X Nyestarts) for the leader problem,



Table 1.

Selected test problem from literature for multi-objective bilevel optimization.

Problem Formulation
Min F(zy,x1) = ( (21, —1)° +Zz 22, + (zu)® +€ )
(Tu,x1 (xllfl) +Zz 2 Tl; +(Iu71) +¢&
subject to
Example 1 K 2
n=1 x; € argmin f(x,,x1) = ot 21:2;li 5
m=K x] Ty~ Tu Yo T
-1< (xu7xl17'rl27"' le) <2
0.01 0
€~ N0, Ze), Ze { 0 0.01]
Min FY( - (1+7 = cos(ameuy)) + 3 fs(@u; — 155)2 + 7350 (21, — @u;)? —rcos(v5 3 )+§
in Xu, X]
(Xu,x1) u (14 r —sin(arzy,)) + Z 2(93u7 — T) +7300 K(xy, — ui)Q rsln(’y + &)
2 K s
; — Iy, - 5, 10(1 — = — T,
Example 2 gubjectto x; € argmin f(xy,x;) = = +Z}é=2(mll xu,z) +ZKZ=2 0(. :OS(K(:% zus))
n=K x| Dima (@, — uy)? + 372, 10 sm(?(xli )
m=K " g e[-K,Kli=1,....K
Ty € [174}717{1 € [7K7K]7j =2,...,K
0.25 0
Min B( - vL(@uy) + 25 (@2, + 10(1 — cos(Fau;)) + 7 Xits (@1, — wu,)? — Tcos('ygT—) + g
in Xu, X
(%usX] W v2(Tuy ) + Z]KZQ(QU%J +10(1 — cos(xu;)) + 7 Zfiz(mli —zy,)? — rsin(yg - ll )
. in(0.27)+/]0.02 si , < <
where v, (2, ) = c0s(0.27) 2y, + sin(0.2m)4/]0.02sin(57xw, )|, for0 < zy, <1
ZTuy — (1 —cos(0.2m)), forxyu, >1
Example 3 o) = 4 - sin(0.27)xy, + c0s(0.27)4/[0.02sin(57zy, )|, for0 <z, <1
n=K ! 0.01(zy, — 1) —sin(0.27), for @y, > 1.

m=K 2 K
subject to x; € argminf (xy,X]) = <xl1 + 2 iza(T,

x1
z, €[-K,Kl,i=1,...,K
Ty, € [0.001, K], 2, € [-K,K],j =2,...,

009 0 ]

K

e~ N30, %= )" o0

—l'u)
Zf(2(l—37u)2 >

where Ninitiq; 1S the number of initial decisions for starting the al-
gorithm and Nyestarts 1S the parameter for Gaussian process de-
clares the number of restart to avoid to stuck at local optima. We
choose it to be 2 x (d + 1) where d is the dimensions of the de-
cision variable. We run the experiment for different batch numbers
qg=1,9=2,q9=4,q = 8 to test the effect on performance. The
HYV difference is shown in Figure 3 for 15 and 20 variables, and 10
variables for Examples 1 and 2 respectively. While increasing the
batch size, decreasing the HV difference as presented in Figure 2
shows the convergence of the proposed algorithm. Because of lack
of information in the reference paper, we could not obtain the FE
results for Example 1 with 20 variables.

Example 1. We can see from Table 2 that the required upper-
level FE is significantly lower, while the algorithm approximates
successfully to the Pareto-optimal front while handling the uncer-
tainty at the leader’s objective. For 15 variables BAMBINO achieves
~ %38 improvement in terms of FE compared to m-BLEAQ and
~ %89 compared to H-BLEMO. The IGD values in Table 2 for 15
and 20 variables show that BAMBINO successfully approximates the
Pareto-optimal front of the problem while handling the uncertainty
of the leader’s objective for both. We show the HV difference be-

tween Pareto-optimal front solutions and approximated BAMBINO
decisions algorithm in Figure 3. Again we tried different batch sizes
for the experiment, and it can be seen that a batch number of 8 is best
for this specific example at both dimensions. We could not compare
the 20 dimensional version of the problem with the selected algo-
rithms because of the lack of information in [21].

Example 2. Table 2 shows that BAMBINO obtains the best IGD

results compared to the other algorithms. In terms of FE, it signif-
icantly improves state of the art, with &~ %81 improvement for 10
variables and ~ %88 improvement for 20 variables compared to m-
BLEAQ. We also show the HV difference in Figure 3 and we can
observe that, for this specific example, the batch number of 8 is the
best selection for both 10 and 20 dimensional versions.

Example 3. Table 2 shows that BAMBINO obtains the best IGD
value compared to m-BLEAQ and H-BLEMO while improving ef-
ficiency in terms of FE: ~ 84% and ~ 97% with 10 variables, and
~ 89% and ~ 98% with 20 variables. Figure 3shows that batch size
q = 8 gives the best results.

In summary, BAMBINO is successful on the selected test problems
while handling noisy objectives with less computational cost. Noise
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Figure 3. Hypervolume difference graph (log scale) with different batch sizes (¢ = 1,q = 2,q = 4, ¢ = 8) for Example 1 with 15 (top-left) and 20
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Table 2. FE and IGD values for the examples with the number of variable
dimensions for the batch size ¢ = 8.

Number of BAMBINO
Variables

m-BLEAQ H-BLEMO
IGD FE IGD FE IGD FE
0.0044 4032 0.0013 6,464 0.0046 39,818
0.0051 4022 0.0069 22,223 0.0134 106,003
0.0076 4022 0.0079 25,364 0.0134 132,907
0.0105 4042 - - - -
0.1032 4042 0.0435 34,110 0.1106 191,357
0.0924 4042 0.0623 36,439 0.1321 216,083

Example 1 15
Example 2 10
Example 3 10
Example 1 20
Example 2 20
Example 3 20

in the leader’s objective makes the problem harder to solve but more
realistic for modelling practical problems, because of real-world un-
certainty. We show the proposed BAMBINO algorithm works well
on these test benchmark problems.

4.2 Practical Case: Gold Mining in Kuusamo

Kuusamo region is a popular tourist destination known for its natural
beauty. There is a lot of interest in this region cause of containing a
huge amount of gold deposits, considered to be a "highly prospec-
tive Paleoproterozoic Kuusamo Schist Belt" [4]. The expected gold
amount in the ore is around 4.9 g per ton according to an Australia-
based gold mining company. Even though there is a big potential
in terms of providing lots of jobs in the region and leading to a great
amount of gold resources, there are some concerns about harming the

environment. The first of them is that mining operations may cause
pollution of the river water in the region. It causes fear for environ-
mentalists. Second, the ore in the region contains uranium and if it is
mined, it might decrease the reputation of the tourist resorts around.
Another one is the open pit mines around the area called Ruka will
cause a turn-off for skiing resorts and hiking routes around and it will
decrease the tourist interest.

The regulating authority, which is government, acts as a leader and
the mining company is the follower which reacts rationally to the de-
cisions of the leader in order to maximize its own profit. The leader
should find an optimal strategy assuming that he holds the neces-
sary information about the follower. In the situation explained above,
the government has a decision-making problem which is whether to
allow mining and to what extent. In the problem above, the leader
has two objectives while the follower has one. The first objective is
maximization of revenues coming from the project and the second
objective is to minimize the environmental harm which is a result
of the mining. The mining company also aims to maximize its own
profit. While the government is optimizing its own taxation strategy,
it needs to model how the mining company reacts to any given tax
structure. Therefore, the authority makes an environmental regula-
tory decision instead of solving the problem to optimality. Clearly,
the objectives are conflicting such as large profits may affect the en-
vironment by increasing the damage which follows with a bad public
image. The mathematical formulation of this hierarchical decision-
making problem can be found in Table 3. More details can be found
about the bilevel modelling of the problem in [22] and [21]. Figure
4 presents the Pareto-optimal frontier of the given problem for the
government according to the formulation in Table 3. We can observe



Table 3.

Gold Mining in Kuusamo

Category Level Formulation
Variables Upper level 7 [per unit tax imposed on the mine]
Lower level q [amount of metal extracted by the mine]
Upper level ?;g: Z; z f‘(DT&;I)) j Z?c([]t?:nr\?i\;grrlll::inta] damage]
Objectives ’
Lower level fi(r,q) = 7(7,q) = (o — Ba)g — (8¢ +vq + $) — 7q [profit]
. Upper level q>0,7>0
Constraints Lower level w(r,q) >0
. 0.25 0
Uncertainty Upper level &~ N(ug, Xg), e = (1,1), 5 = 0 0.25
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Figure 4. Pareto-optimal frontier for the government representing the
trade-off between tax revenues and environmental pollution.

that increasing the tax revenue decreases environmental damage.

4.2.1 Results of Practical Case

In this section, we present the results obtained using the BAMBINO
algorithm on the analytical model of the problem proposed in Table
3. Figure 5 shows the Pareto-optimal front obtained using the BAM-
BINO approach. The plot gives the idea to the authority how to con-
sider the trade-off between its own objectives. We used 50 iterations
for upper-level optimization using a batch Bayesian approach with a
batch size of 4. For lower-level optimization, the NSGA-II algorithm
is implemented with the same parameters specified in Section 4. We
can observe that with the proposed method, the obtained results are
distributed around the true Pareto-optimal frontier and are approxi-
mated to it successfully. We also run the experiments for the batch
size ¢ = 1,g = 2 and ¢ = 4 for testing if the algorithm converges to
the Pareto-optimal front. The IGD value is 0.0494 for ¢ = 1, 0.0033
for ¢ = 2 and 0.0021 for ¢ = 4. We can see from the decreasing
IGD values, as we increase the batch number, the selected points are
more approximated to the true Pareto-optimal front. The increasing
batch size provides us with parallel evaluations during upper-level
optimization which decreases the needed execution time. It is also
good to handle environmental uncertainty, represented by £ in Table
3, which may be an uncontrollable parameter such as inflation dur-

0 100 200 300
F1

400 500 600

Figure 5. Pareto-optimal frontier for the government representing the
trade-off between tax revenues and environmental pollution.

ing the time period of taxation or unexpected environmental damage
during the mining process. We can observe that the proposed method
is successfully approximated even handling the uncertainty of objec-
tives.

We believe that BAMBINO can be applied to several practical
bilevel problems successfully applied in the machine learning com-
munity, such as image classification [19], deep learning [14], neural
networks [16], and hyperparameter optimization [17].

5 Conclusions

In this paper, we discussed bilevel multi-objective optimization un-
der upper-level uncertainty and presented a hybrid algorithm called
BAMBINO, based on batch Bayesian optimization with hypervolume
improvement. We ran experiments using three benchmark problems
and one real-world problem from environmental economics literature
which is a decision-making problem between an authority and a gold
mining company. BAMBINO performed very competitively in terms
of computational efficiency and convergence. We also showed how
batch size selection affects performance in terms of hypervolume im-
provement.

Limitations and Future Work. Multi-objective bilevel problems
are expensive to evaluate and time-consuming most of the time. Even



with the uncertainty at the upper-level, it might cause a lack of per-
formance during the acquisition optimization process of the proposed
algorithm. Also, the Pareto-optimal solution set does not always pro-
vide the optimal solution for all objectives. However, still approxi-
mating the Pareto-front with a black-box approach improves the per-
formance compared with various existing methods as we can see
from Section 4.1.1. In future work, we shall explore the decision-
making from the Pareto-optimal front and how preference learning
might affect the process. Moreover, we will look to gain some infor-
mation by analyzing the relationship between acquisition selection
and optimization results.
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