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Abstract. Automated decision support systems, based on reinforce-
ment learning, are increasingly useful to complex problem settings
in order to optimize a primary objective. When these systems affect
individuals or groups, it is essential to reflect on fairness. As abso-
lute fairness is in practice not achievable, we propose a framework
which allows to incorporate and balance distinct fairness notions
along with the primary objective. To this end, we formulate sequential
fairness notions in terms of groups and individuals. First, we present
a Markov decision process that is explicitly aware of individuals and
groups. Next, we formalize fairness notions in terms of this extended
Markov decision process which allows us to evaluate the primary
objective along with the fairness notions the user cares about, taking
a multi-objective reinforcement learning approach. To investigate our
framework, we consider two scenarios that require distinct aspects of
the performance-fairness trade-off: job hiring and fraud detection. On
the one hand, fairness in job hiring requires composing a strong team,
while providing equal treatment of applicants as individuals as well as
groups. On the other hand, fraud detection necessitates the detection
of fraudulent transactions, while distributing the burden of checking
customers fairly. We also highlight key research challenges regarding
fairness notions as these need to include parts of the history in order
to be calculated, while being impacted by the exploration strategy.

1 Introduction
Fair and balanced automated decision support is essential, to avoid
discrimination or favouritism towards individuals and groups. This is
crucial in a wide array of applications, such as finance [36], job hiring
[49, 50], epidemic mitigation [35, 22, 13] and fraud detection [42].
Fair decision support systems allow stakeholders to make informed
decisions, taking into account an appropriate performance-fairness
trade-off. This is important, as advice that is proposed by a decision
support system potentially impacts individuals and groups. Therefore,
it is vital to study this matter to enable a wider acceptance of algo-
rithms that support decision makers. As fairness requirements depend
on the problem context and the decision maker’s preferences, a frame-
work should be capable of dealing with multiple fairness notions,
that encompass the ethical considerations of the problem domain.
Consequently, it is important to develop a framework that considers
fairness based on sensitive features (e.g., race and gender) and their
combinations.

Previous work mainly focused on supervised learning techniques
that operate on a given dataset, such as machine learning [38, 20, 39,
24, 21] and data mining [9, 30, 23]. However, automated decision
problems are typically sequential. Furthermore, such settings typically

evolve over time and as such a reinforcement learning (RL) approach
is warranted [17]. This means that we must deal with the impact of
short-term decisions on long term performance. RL enables an agent
to learn a policy by interacting with an environment [55]. At each
time t, the agent observes the state st of the environment and decides
which action at to take, for which it receives a reward rt and observes
the next state st+1. The agent learns through trial and evaluation by
repeatedly interacting with the environment, where it must carefully
balance between exploration and exploitation to reach an optimal
policy [55]. Additionally, the agent may need to deal with stochastic
and non-stationary environments where it must adapt its behaviour to
maintain its performance.

In a supervised classification setting, the ground truth is known and
used to train the model. Based on this ground truth, a confusion matrix
is computed to reflect on the correctness of the model’s predictions.
By definition, reinforcement learning agents do not have a priori
access to a ground truth, as the agent collects data while interacting
with an environment. Therefore, actions taken by the agent cannot
be classified to be correct or false, which impedes the use of fairness
notions that rely on a confusion matrix. As most fairness notions rely
on the ground truth, they are only applicable when feedback regarding
this ground truth can be collected from the environment [38].

We emphasise that this ground truth is different from the reward
signal in a reinforcement learning setting. While the reward signal may
indicate how suitable an action is given a state, it does not conclusively
specify whether the action was correct or false. When feedback on the
ground truth is available, it may concern a sparse or delayed signal.
To illustrate this, consider the example of job hiring, where we receive
delayed feedback as the candidate can only be evaluated after working
for some time. Moreover, candidates can only be evaluated if they are
hired and not when they are declined.

Recent work on fairness in RL has focused on single fairness no-
tions in application-specific solutions [29, 28, 58, 51, 11, 48] and
typically relies on reward shaping [37, 11]. However, such approaches
do not suffice for real-world decision support problems, as the de-
sired performance-fairness trade-off cannot be described upfront by
stakeholders. Furthermore, real-world problems typically require mul-
tiple, possibly conflicting, fairness notions [38]. To this end, a multi-
objective approach is essential to manage the main objective and to
consider multiple fairness notions simultaneously [26]. We propose
a formal fairness framework that is capable of dealing with multiple
fairness notions. We experimentally evaluate this framework in two
distinct settings: job hiring and credit card fraud detection.



2 Fairness framework
We define the fairness framework and highlight its requirements and
suitability regarding distinct problem settings. To introduce fairness
notions in an RL context, we illustrate them based on two real-world
settings. The first setting concerns job hiring, where the aim is to
hire highly qualified candidates while limiting bias towards sensitive
features. As such, it is crucial that the agents recommend qualified ap-
plicants, while rejecting unsuitable ones. The second setting involves
fraud detection, where fraudulent transactions must be efficiently
flagged, taking into account that verification requires human effort. It
is important that the agent targets real fraudulent transactions to not
displease genuine customers. Additionally, fraudulent transactions
constitute anomalies, rendering them challenging to detect.

We highlight that RL can be used both directly or indirectly in
the context of real-world problems. On the one hand, in the fraud
detection setting, a detailed simulator is used to train an agent, after
which the learned policies can be studied by domain experts. On
the other hand, the agent may learn directly in the real world to
flag suspicious transactions. For the purpose of validating our results
against a variety of scenarios, we make use of simulated data based
on real data distributions.

2.1 fMDP and the fairness history

A sequential decision process can be formally described as a Markov
Decision Process (MDP) [55], consisting of a set of states S, a set of
actionsA, a set of rewardsR and a transition function p : S×R×S×
A → [0, 1] describing the probability of a next state st+1 and reward
rt given the current state st and action at. We extend this standard
MDP to an fMDP to encode a feedback signal ft, that concerns an
indication whether the chosen action at was correct at time t. Note
that this feedback is optional and can be partial, sparse or delayed. As
the presence of the ground truth is required for some fairness notions,
it must be either obtained through feedback or approximated based
on previous interactions.

Existing fairness notions typically concern fair treatment between
individuals or groups. We introduce the following notation regarding
individuals and groups. It refers to the set of individuals involved in
the decision process at time t and we use it to refer to an individual
of that set. In the job hiring setting, It refers to the set of candidates
who applied for the job at time t and for which a decision (i.e., hire or
reject the applicant) should be made. In the fraud detection setting, It
refers to all customers at time t when deciding whose transactions to
verify. We refer to the set of all individuals involved in the decision
process from the start t = 0 up to time T as IT .

We define Gg,t as the individuals of It that make up group g. We
refer to all individuals involved in the decision process until time T ,
that belong to group g, as GTg . For ease of notation, we assume that
groups are predefined and can be empty. In the job hiring setting, GTg
refers to the group of men or women, who applied for a job until time
T . For the fraud detection setting, GTg refers to a continent for which
the RL agent must decide whether or not to flag transactions.

Given the fMDP, we assume that a state st provided to the RL
agent encodes the individuals It and groups Gt involved in the deci-
sion at time t. Furthermore, the agent’s action at encodes the decision
impacting the involved individuals and groups, and the feedback ft
specifies the correctness of that decision. We use the following nota-
tion to connect It and Gt to st, at and ft:

It[st], It[at], It[ft] (1)

Gt[st], Gt[at], Gt[ft] (2)

To define fairness over time, a history of encountered states and
chosen actions needs to be maintained, concerning the impacted indi-
viduals and groups. Given an fMDP, we define a historyHT until
time T of past interaction tuples and their feedback regarding the
ground truth:

HT = {st, at, rt, ft}Tt=0 (3)

We define the encountered states and selected actions from history
HT until time T respectively asHT

S andHT
A. We refer to feedback

regarding the correctness of the action as HT
f . Following from the

definitions in Equations 1 and 2,HT
S ,HT

A andHT
f are defined in terms

of groups GT and individuals IT . In the job hiring setting, the history
consists of the encountered job applicants and their corresponding
decision, indicating whether or not they were hired. In the fraud
detection setting, the history consists of all observed transactions,
along with their checking status. In both settings, the history is used
to define fairness over time.

2.2 Fairness notions

We formally define a fairness notion F as a power set P over GT
groups (Equation 4) and IT individuals (Equation 5), given the history
of encountered statesHT

S , chosen actionsHT
A and feedbackHT

f until
time T :

F : P(GT )×P(HT
S )×P(HT

A)×P(HT
f ) ↪→ R− (4)

F : P(IT )×P(HT
S )×P(HT

A)×P(HT
f ) ↪→ R− (5)

The fairness notion F is defined as the negative absolute differ-
ence in treatment between groups or individuals. The closer F is to
zero, the smaller the difference in treatment is between the groups or
individuals. When F = 0, the agent has achieved exact fairness with
respect to the given fairness notion. While F may be intractable due
to limitations of defining exact fairness [28], we propose to approxi-
mate it with F̂ . For a future fairness objective, F , and by extension
its approximation F̂ provide a foundation for a reward signal that can
be used with a multi-objective RL approach.

The availability of a ground truth and as a consequence the con-
fusion matrix impacts which fairness notions can be calculated for a
given scenario. The confusion matrix is defined as a two-dimensional
table comparing predictions of a model to the actual values. In the
case of binary actions (e.g., hire or reject an applicant) it specifies
the number of true positives (TP ), false positives (FP ), false neg-
atives (FN ) and true negatives (TN ). Consider the group fairness
notion statistical parity [20], where the probability of receiving the
preferable treatment of the agent (HT

A = 1) should be the same across
groups g and h:

F = −|P(GTg [HT
A] = 1|GTg [HT

S ])

− P(GTh [HT
A] = 1|GTh [HT

S ])|
(6)

Statistical parity requires that (TP +FP )/(TP +FP +FN+TN)
is equal for both groups g and h. Because this fairness notion focuses
on equal acceptance rate across groups, it can be expressed without
knowledge of the ground truth. Other fairness notions require that the
ground truth is (partially) known, such as equal opportunity:

F = −|P(GTg [HT
A] = 1|GTg [HT

f ] = 1,GTg [HT
S ])

− P(GTh [HT
A] = 1|GTh [HT

f ] = 1,GTh [HT
S ])|,

(7)

where HT
f = 1 is the correct action as specified by the feedback

regarding the ground truth. Equal opportunity requires that the recall
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TP/(TP +FN) is equal across groups and is consequently indepen-
dent of FP . However, in order to calculate it, we require a (partial)
ground truth that informs us about TP and FN . In the job hiring
setting, this requires knowing how qualified a job candidate is to cal-
culate the confusion matrix. In the fraud detection setting, the partial
ground truth is available, where transactions flagged as fraudulent
are manually verified, which provides the number of TP and FP .
In contrast, there is no information on unflagged transactions unless
random checks are performed, or when individuals complain about
fraud cases in their experience. Ensuring people are treated fairly,
with regard to all groups they are a part of, is achieved by ensuring all
their groups are treated fairly with regard to each other. If the interest
is that each individual receives fair treatment, then individual fairness
notions should be used.

Individual fairness notions aim to treat similar individuals similarly
[20]. Given two individuals it and jt, we assume a distance d(it, jt)
between the individuals. Given the probability distributions Mi and
Mj over the actions for it and jt respectively, and a distance met-
ric D(Mi||Mj) between these probability distributions, individual
fairness requires that:

∀it, jt ∈ It : D(Mi||Mj) ≤ d(it, jt) (8)

As group fairness notions aim to similarly treat groups that differ
by a set of sensitive features, they cannot detect unfairness at an
individual level, as all attributes except the sensitive ones are ignored
[20]. Similarly, individual fairness notions lack the ability to ensure
fairness between groups. Ideally, an RL agent conforms to a collection
of both group and individual fairness notions to manage this trade-off,
which can be managed using a multi-objective learning approach [26].

2.3 Fairness in sequential decision making

Defining fairness in a sequential setting requires knowledge of how
fairness notions can be defined given the agent-environment inter-
actions. Consider the fraud detection setting, where an agent must
decide how to efficiently flag transactions each day for a credit card
company [60]. Throughout the day, each individual client may decide
to make transactions. The agent aims to flag suspicious transactions,
in a way that everyone in the population is subject to a similar amount
of re-authentication requests.

Suppose in our fraud detection setting, that each hour the agent
encounters the continents from where customers attempt transactions.
Each hour, the agent chooses how to flag transactions for the respective
continents. Then at each time t, given an observed state st and chosen
action at, given Gt groups, a group fairness notion can be defined
if st contains all respective groups Gt[st] and the chosen action at

represents the action taken towards each group Gt[at]. Figure 1a
visualises the possible scenarios with regards to the available action,
which can be an action over all groups Gt, or a specific action for
each group g. Note that if individuals are defined within the state
representation, then Equation 2 can be defined by grouping individuals
in It under their respective groups Gt.

Next in the fraud detection setting, consider that the agent only
encounters certain continents on an hourly basis, which could be
the case due to different time zones. Then a sufficiently long time
horizon must be considered to encounter all age groups. Concretely,
if the state st contains only information on a subset Bt ⊂ Gt of
the respective groups, a fairness notion can only be defined when
considering multiple timesteps of encountered groups BT to contain

sufficient information about all impacted Gt groups for time t:

Gt[st] =
⋃

g∈BT

GTg [HT
S ] (9)

Similarly, we require multiple timesteps if the action at does not
define the action for all groups:

Gt[at] =
⋃

g∈BT

GTg [HT
A] (10)

If individuals are defined within the state representation of the en-
vironment, Equations 9 and 10 can be extended to consider cases
where a subset of individuals is encountered. Figure 1b visualises the
scenario where only a subset of the groups is available at each time
t, requiring a history of timesteps in order to express group fairness
notions.

(a) (b)

(c) (d)

Figure 1: (a) (b) Scenarios where group fairness can be calculated.
(a) All groups Gt are encountered at each time t. Top: action at is
an action over all groups Gt. Bottom: action at encodes a specific
action for each group g. (b) All groups Gt are encountered over a time
horizon until time T . The + symbol indicates a union over states and
actions. (c) (d) Scenarios where individual fairness can be calculated.
(c) All individuals It are encountered at each time t. Top: action at is
an action over all individuals It. Bottom: action at encodes a specific
action for each individual it. (d) All individuals It are encountered
over a time horizon until time T . The + symbol indicates a union
over states and actions.

Following up on the same fraud detection setting, when the agent
encounters all customers each hour, then individual fairness notions
can be calculated for the transactions. To define an individual fairness
notion for It individuals at time t, given an observed state st and
a chosen action at, we require that It[st] and It[at] are defined.
Figure 1c visualises the scenarios where individual fairness can be
calculated at each time t. Note that the action can be fine-grained for
each individual or coarse-grained over their respective countries or
continents.

When only a portion of the individuals is encountered at each time
step, then we can only calculate individual fairness notions when we
maintain a history of interactions. An example for fraud detection is
checking a subset of all customers for a given continent at different
times during the day, to monitor suspicious transactions based on their
local time. In this case, a fair agent should balance over time which
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continents are checked more often to not cause certain customers to
re-authenticate more than others. If state st does not contain all It
individuals but rather a subset Ct ⊂ It, an individual fairness notion
can be defined over multiple time steps so that all affected individuals
CT are encountered:

It[st] =
⋃

i∈CT

iT [HT
S ] (11)

It[at] =
⋃

i∈CT

iT [HT
A] (12)

Figure 1d visualises the scenario where individual fairness can be ex-
pressed over multiple time steps. Note how both group and individual
fairness notions can be expressed if the encountered states contain
all necessary information about the respective groups and individuals.
Regardless of whether the action was specifically assigned to them,
their group, or the entire population, we can compare the action which
affects them to calculate fairness notions. In this paper, we consider
the scenarios from Figures 1b and 1d, where all groups and individuals
are encountered over a history, respectively.

Depending on the setting, it could be more important to check fair-
ness notions against the impact of the agent’s action rather than against
the action itself. We discussed actions with regard to the applicability
of fairness notions, however, both the immediate and estimated effect
follow similar rules as information about them must also be available
in the agent-environment interactions. An example in the context of
fraud detection, where the impact of the action is considered impor-
tant, concerns the need to detect fraudulent customers to prevent that
the company makes losses due to fraud. If the impact of the action is
more important, the agent should avoid burdening genuine customers
with frequent checks to not lower customer satisfaction.

We consider each fairness notion by computing its approxima-
tion F̂ , through a history with a sliding window of the most recent
interactions. Note that this approximation is necessary due to the
intractability of fairness notions to achieve exact fairness over the
full history. On the one hand, we require enough interactions to guar-
antee exact fairness [28]. On the other hand, considering the full
history makes computing the fairness notions intractable. Individual
fairness notions in particular become intractable due to the pairwise
comparisons needed between each new individual and all those previ-
ously encountered. In the context of data mining, approaches focus
on over-representing minorities or rare events [41] in the training data.
Similarly, recommender systems suffer from uneven data distributions
which impacts fairness and as such requires re-distributing the data to
appropriately compare groups and individuals [57]. We consider such
approaches as future work to learn better approximations for fairness
notions over a full history.

2.4 Learning and exploration

In the previous sections, we assume that the states in the history en-
compass all groups GT and individuals IT necessary to compute
the relevant fairness notions. However, to meet this assumption, the
relevant states need to be encountered, which is highly dependent on
how the agent interacts with the environment. To establish this, we
need an appropriate exploration strategy that ensures that sufficient
information is collected about all groups GT and individuals IT . On
the one hand, to guarantee optimality, this exploration strategy will
need to collect information on groups and individuals as broadly as
possible. On the other hand, to keep the process computationally
tractable, the exploration strategy should be effective and targeted.

Note that, as we aspire to settings that aim to support decision mak-
ers, we can learn and evaluate policies in simulated environments,
prior to deploying them in the real world. This facilitates a model-
based reinforcement learning loop that could mitigate the hurdle of
computationally intensive exploration strategies.

3 Related work

As reinforcement learning approaches are well suited to deal with
sequential processes, new research has focused on multi-armed bandit
approaches [29, 44]. To enforce fairness in job hiring, multi-armed
bandits [49, 50] as well as generalisations towards MDP approaches
[28] have been explored. However, current solutions do not employ the
multi-objective approach that is necessary for learning an appropriate
performance-fairness trade-off. Approaches for fraud detection often
rely on offline trained algorithms [16, 15, 34], which are retrained
as labelled data becomes available with a delay. Soemers et al. [42]
propose a contextual bandit implementation that is able to adapt to
changes in fraudulent behaviour. In the field of epidemic control,
mitigation strategies have been explored in RL [35, 22, 13]. Reymond
et al. [47] present a multi-objective approach for minimising infections
and hospitalisations, taking into account the social burden of lost
contacts. While this work does not focus on fairness explicitly, it
highlights how other real-world problems have a critical fairness
component to consider.

In the context of fairness, group fairness notions often rely on pre-
defined groups. As such, these group notions do not guarantee fairness
amongst any further subgroup divisions. Therefore, it is possible for
an algorithm to learn a fair policy for the given groups, while being
unfair for subgroups. Kearns et al. [31] propose a technique to deal
with this phenomenon, which is known as gerrymandering. They high-
light the need for a more extensive fairness evaluation when it comes
to group fairness by enforcing fairness for the subgroups as well.
This work aligns with our argument for a multi-objective approach to
enforce multiple fairness constraints with regards to existing fairness
notions.

4 Scenarios

In this section, we introduce the two scenarios used for our experi-
ments, along with their distinct fairness implications.

4.1 Job hiring

Job hiring is a reoccurring process as it is repeated multiple times
throughout the company’s lifetime. This allows companies to use
previous data when training algorithms. However, the training data
may be subject to historical bias, which is then further exacerbated by
the algorithm [38]. Additionally, the job hiring process is sequential,
typically consisting of multiple decision stages, i.e., resume screen-
ings and possibly multiple rounds of interviews [7], which warrants a
sequential approach. Moreover, unfairness at one stage may be propa-
gated to consecutive stages. In job hiring, gender-based discrimination
ranges from stereotypes and employer beliefs [56, 4] to occupational-
specific characteristics [27, 33, 2, 14, 1]. Ethnic discrimination has
been studied from an immigration perspective [61] and is based on
implicit interethnic attitudes [6]. Moreover, combinations of sensitive
features are known to cause discrimination [45, 3, 19].
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Job hiring fMDP We define the job hiring setting as an fMDP,
where an agent must learn to build a well-performing team of employ-
ees, when presented applicants sampled from the Belgian population
[52]. Given an applicant and the current team composition, the agent
must decide on the appropriate action at, i.e., to hire or reject the
applicant, based on their estimated qualifications. To calculate the
qualification of each applicant, we define an objective but noisy good-
ness score G ∈ [−1, 1], that quantifies how much the applicant is
estimated to improve the company based on their skills. We define
this goodness score as the ground truth for our experiments based on
which the fMDP classifies applicants. Using a threshold ϵ = 0.5,
the ground truth action ât says to hire the applicant if Gt >= ϵ,
otherwise reject. We provide additional details in Appendix A on the
job hiring fMDP and the applicant generation.

Fairness notions in job hiring In this work, we consider fair-
ness concerns in job hiring based on discrimination grounded in two
sensitive features: gender and nationality. As the agent observes an
applicant in the state st at each timestep t, both individual and group
fairness notions are applicable (Section 2.2). We consider the context
of unfairness based on gender, where an applicant it ∈ IT can belong
to the group of men GTgmen

or women GTgwomen
. For job hiring, we

consider the group fairness notions statistical parity (Equation 6) and
equal opportunity (Equation 7) as objectives in addition to the main
reward. We define individual fairness (Equation 8) between applicants
using the Bray-Curtis distance d ∈ [0, 1] [8], which corresponds to
the Manhattan distance divided by the sum of the applicants’ features.

4.2 Fraud detection

Fraudulent credit card transactions result in significant losses when un-
detected [18]. While manual investigations can accurately detect fraud,
it is unfeasible for the large number of transactions without suffering
delays. Moreover, fraudsters are known to change their behaviour over
time to avoid detection [16], requiring an online approach to continu-
ously adapt to new fraud behaviours. As customers perform multiple
transactions over a certain time period, the credit card company must
deal with customer satisfaction and patience when requiring authen-
tication steps to process a transaction [60]. As transactions typically
include personal and location data, algorithms may learn to discrimi-
nate based on sensitive features. For example, countries with higher
base rates (i.e., proportions of fraudulent transactions) than others
may have customers checked more often based only on their location
[38]. To this end, fraud detection requires fairness notions which take
into account this difference in base rate to accurately flag transactions.

Fraud detection fMDP The fraud detection setting concerns on-
line credit card transactions where multi-modal authentication is used
to identify and reject fraudulent transactions. To simulate customer
behaviour, we use the MultiMAuS simulator [60], which is based
on a database of real-world credit card transactions. We extend this
simulator to a fMDP, by providing the current company’s fraudulent
transactions percentage and customer satisfaction along with the trans-
action in the state at each time step. The feedback signal f is defined
based on the gain or loss in reward, indicating if revenue was lost due
to fraud. Concretely, the agent receives a positive reward of +1 for
every succesful genuine transaction and −1 for uncaught fraudulent
transactions and cancelled transactions. We provide additional details
on the MultiMAuS simulator and the fMDP in Appendix B.

Fairness notions in fraud detection We investigate unfairness in
fraud detection based on the continent of the customers. As the agent
observes a new transaction in state st at timestep t, both individual
and group fairness notions are applicable. For simplicity, we consider
two continents, Ca and Cb, with the most transactions. We define
group fairness notions as follows: Given transactions it ∈ IT , where
transaction it can belong to continent Ca or Cb, all group fairness
notions require that the difference in treatment between the groups
GTCa

and GTCb
is minimised. For the group fairness notion overall

accuracy equality [5], the accuracy of the agent should be the same
across the continent groups Ca and Cb.

F = −|P(GTCa
[HT

A] = GTCa
[HT

f ]|GTCa
[HT

S ])

− P(GTCb
[HT

A] = GTCb
[HT

f ]|GTCb
[HT

S ])|
(13)

Predictive parity [12] requires that the probability of being fraudulent,
given that the agent requested a re-authentication, is the same across
groups Ca and Cb.

F = −|P(GTCa
[HT

f ] = 1|GTCa
[HT

A] = 1,GTCa
[HT

S ])

− P(GTCb
[HT

f ] = 1|GTCb
[HT

A] = 1,GTCb
[HT

S ])|
(14)

In fraud detection, we define individual fairness between transactions
using the complement of the consistency score [59]:

F = − 1

||IT ||
∑
i∈IT

1

k
|ai −

∑
j∈kNN(i)

aj | (15)

given action ai for an individual i, where k is the number of nearest
neighbours to consider, given a k-nearest neighbour algorithm kNN
[40]. To compare this notion to the individual fairness notion from
job hiring, we assume the same Bray-Curtis distance for kNN .

5 Experiments
As both the job hiring and fraud detection scenario deal with a reward
and multiple fairness objectives, the number of policies with suitable
trade-offs can scale exponentially. To find all policies would therefore
be a computationally expensive task. To this end, we use Pareto
Conditioned Networks (PCN) [46]. PCN trains a single neural network
to approximate all non-dominated policies, by applying supervised
learning techniques to improve the policy. We provide additional
details on PCN in Appendix C.

For both experiments, we report the learned non-dominated cover-
age sets for all fairness notions and the reward [26]. Therefore, the
reward vector consists of: the main reward (R), statistical parity (SP),
equal opportunity (EO), overall accuracy equality (OAE), predictive
parity (PP), individual fairness (IF), consistency score complement
(CSC). We assume that the (objective) ground truth is known for both
environments, to investigate all 6 fairness notions. Specifically, the
fairness notions EO, OAE and PP require access to the ground truth.
We explore the impact of multiple sliding windows on the fairness
notions in the experiments below.

5.1 Job hiring

For the job hiring scenario, we train a PCN agent to hire and main-
tain a well-performing team of employees. We compare the task for
building teams of two different sizes: Building a team of 20 or 100
employees, where each episode lasts for a maximum of 200 or 1000
timesteps, respectively. We report the results for all objectives, but
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ask the agent to optimise on four: {R, SP, EO, IF}. We consider the
Belgian population, from the STATBEL statistics [52], and apply 2
permutations two skew the population distribution. For one permuta-
tion, we skew the originally equal proportions for gender such that
70% of applicants are men and 30% women. The other permutation fo-
cuses on the combination of nationality and gender, such that foreign
women become a minority.1

Team-20 Figure 2 displays the results for the different population
distributions, with regards to the learned non-dominated coverage sets
for building a team of 20 employees. We implement the fairness his-
tory as a sliding window of 100 timesteps. Note how the best learned
policies are close to 0 for all group fairness notions, indicating the
agent has learned policies which can satisfy more fairness notions
than initially requested. As most group fairness notions require the
confusion matrix to compute, there are overlaps with regards to the
involved true and predicted actions. In contrast, due to the impact
of how the individual fairness notions are defined, it is possible for
the agent to find larger differences in non-dominated values among
them. Concretely, when comparing similar individuals, IF considers
the probability distributions over the actions, while CSC considers the
action only. Overall, the agent ensures group fairness in all popula-
tions. However, we note a slightly lower individual fairness for the
third population with a minority of foreign women. While the agent is
able to be fair with regards to gender, it does so without considering
the sensitive attribute nationality. This further highlights the need for
individual fairness notions to detect feature intersectionality [38].

(a) (b)

Figure 2: Team-20. Non-dominated coverage sets after 100 000
timesteps for a desired team of 20 employees, with requested objec-
tives in bold. (a) Mean and standard deviation of the non-dominated
value for each objective across 10 seeds. (b) Trade-off area reached
by the non-dominated coverage set for a single seed of the default
population. Note how the notions IF and CSC are harder to maximise,
indicating the agents are better at dealing with group fairness notions
relying on statistical measures than individual fairness notions relying
on a chosen similarity metric between individuals.

Figure 3 shows the results for an agent optimising for one objective
at a time. It is noteworthy that in all three populations, the agent is
more unfair when it optimises for the reward. In contrast, an agent
focusing on any fairness notion provides a higher amount of fairness,
at the cost of the reward. We argue that applying a multi-objective
approach is crucial in these scenarios, to learn policies which reach
meaningful objective trade-offs.

1 We skew the true proportions to {(Belgian,man) : 30% →
40%, (Belgian,woman) : 31% → 40%, (foreign,man) : 20% →
15%, (foreign,woman) : 19% → 5%}

Figure 3: Team-20. Best learned policy when optimising a single ob-
jective per population for a single seed, for a history of 100 timesteps.

Team-100 Figure 4 displays the reached non-dominated coverage
sets, for building a team of 100 employees. We observe similar results,
compared to the teams of 20 employees, across the fairness notions
for the different populations. The agent learns policies where all group
fairness notions are close to 0, while the individual fairness notions
IF and CSC prove more difficult to satisfy.

Figure 5 shows the results for an agent optimising for one objective
at a time when building a team of 100 employees. As for team-20,
when optimising for the reward only, we observe lower fairness values,
with individual fairness notions being particularly low. In contrast to
team-20, there is a noticeable difference between optimising a group
fairness notion or an individual fairness notion across the populations.
This further highlights how only optimising for group fairness does
not guarantee individual fairness and vice versa. Furthermore, note
how all populations result in less similar policies across the fairness
notions than the default population, indicating there is an influence of
the observed state distributions on fairness objectives.

(a) (b)

Figure 4: Team-100. Non-dominated coverage sets after 500 000
timesteps for a desired team of 100 employees, with requested objec-
tives in bold. (a) Mean and standard deviation of the non-dominated
value for each objective across 10 seeds. (b) Trade-off area reached
by the non-dominated coverage set for a single seed of the default
population. The individual fairness notion IF is lowest, as it compares
the probability distributions over individuals, which proves more diffi-
cult to keep similar across individuals. Note that CSC focuses on the
chosen actions only, making it easier to satisfy.

5.2 Fraud detection

For the fraud detection scenario, we assume the default parameters of
the MultiMAuS simulator [60], but increase the frequency of fraudu-
lent transactions to ensure enough genuine and fraudulent transactions
are encountered for both continents. This results in approximately
10% fraudulent transactions. We let the agent check transactions for
a week, resulting in at most 1000 transactions per episode. The re-
sults for all objectives are presented, but we ask the agent to optimise
on only four: {R, OAE, PP, CSC}. Due to the different transaction
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Figure 5: Team-100. Best learned policy when optimising a single ob-
jective per population for a single seed, for a history of 100 timesteps.

frequencies across continents Ca and Cb, we require a larger sliding
window for the history to compare fairness for both continents. In the
following experiments, we explore a history with a sliding window of
200 and 500 timesteps.

Figure 6 shows the learned trade-offs for both history sizes. The
policies learned by the agent across both window sizes follow similar
trade-offs with regards to the reward and the fairness notions. While
the policies improve the requested group fairness notions OAE and
PP, there is a notable difference with the EO fairness notion. This is
caused by the similarity in treatment required by these fairness no-
tions. Concretely, OAE requires that the agent has the same accuracy
across continents, while PP requires that re-authentication requests
lead to the same probability of catching fraudulent transactions for
these continents. In contrast, EO requires that fraudulent transactions
are flagged with the same probability across continents. Note that
individual fairness is low for both IF and CSC, indicating the reward
is conflicting with the agent’s fairness. The largest contributor to this
effect is the different base rates for fraudulent transactions between
individuals, indicating the agent has mostly focused on improving the
requested group fairness notions, at the cost of individual fairness.

Figure 6: Fraud detection, with requested objectives in bold. Mean
and standard deviation of the non-dominated value for each objective
across 10 seeds after 500 000 timesteps.

Figure 7 shows the best found single-objective policies for both
window sizes. We observe a difference in learned policies when using
a different window size. Most notably, the group fairness notions EO
and PP cannot be maximised equally by optimising for one of the other
objectives. We attribute this difference to the reliance of group fairness
notions on statistics over the history. By using a different history size,
choosing the appropriately fair action depends on the actions chosen
previously to provide similar treatment over the groups.

6 Discussion

We propose a framework for exploring the use of fairness notions
in RL. In this framework, we establish a formulation of fairness
notions that can be used as additional reward signals following a
multi-objective learning approach. Based on this formulation, we

Figure 7: Best learned policy for fraud detection when optimising
a single objective. Note how when optimising for each objective
separately, the agent learns different policies for both window sizes.

classify distinct fairness settings grounded in real-world problems. We
highlight the need of multiple fairness notions, particularly ensuring
both group and individual fairness simultaneously. Due to the context
dependency of fairness, we show how requested fairness notions can
be conflicting with the main objective to optimise, as in the fraud
detection scenario. As such, we argue the multi-objective aspect is
crucial in the development of the fairness framework.

By formulating fairness notions in terms of the history defined, we
establish a formal way to reason about fairness notions as reward
functions. Yet, as maintaining the full history will prove computation-
ally intractable for most real-world applications, a major challenge
remains to construct approximate fairness notions. Individual fairness
notions in particular require pair-wise comparisons of all individuals,
in contrast to group fairness notions that rely on the statistical mea-
sures of each group. One research direction is to consider a sliding
window approach, where the history is kept for a fixed or dynamic
number of steps [43]. Another path is to explore the use of distinct
neural sub-networks for the different fairness notions.

Generalising fairness notions to continuous actions presents an in-
teresting venue to extend fairness to a wider array of problem settings.
In the field of regression, algorithms produce a scalar value rather
than a discrete action from a predefined set. Consequently, regression
compares actions based on how much they differ and can detect cor-
relations between the action and one or more sensitive features [32],
which makes it an interesting approach for comparing actions in RL.

Within the overarching topic of ethics, work on explainable AI
focuses on making algorithms interpretable and provides explana-
tions for their decisions [25]. While explainability aims to provide
transparency with regards to an agent’s decisions and policy, fairness
focuses on whether or not the agent makes decisions which conform
to expected impartial treatment. We argue that fairness is an equally
important aspect to focus on to work towards ethical AI. To truly
build a fair decision support system, we envision the need to combine
fairness notions with explainable reinforcement learning, such that
fairness can be taken into account when explaining policies to the
decision maker.
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A Job hiring fMDP
For the job hiring setting, we create a simulator for building a team of employees that supplies at each timestep a new candidate to the agent.
To apply RL, we define the job hiring setting as a Markov Decision Process (MDP) [55]. The MDP is represented by the tuple {S,A,R, p},
consisting of a set of states S, a set of actions A, a set of rewardsR and a transition function p.

State Each timestep t, the agent is presented with the current state st ∈ S, which specifies the company’s current composition pt of hired
applicants and a new job applicant ct to assess. A job applicant ct is represented by the following set of features: their gender, age, years of
experience, degree, extra degree, marital status, nationality and their ability to speak four languages {ldutch, lfrench, lenglish, lgerman}. For the
purpose of this study, we consider gender, nationality and marital status sensitive features, which should not be taken into account when hiring a
job applicant. To generate realistic applicants, we sample from the distribution of the Belgian active employed and unemployed population
provided by the Belgian federal government [52]. For the context of our job hiring scenario, we exclude individuals younger than 18 years from
this data. To assign spoken languages to the candidates, we sample based on the most known foreign languages of adults [54]. We define the
maximum experience of each applicant in function of their age and obtained degrees: maxe = age− 18− 3 ∗ degree− 2 ∗ extra_degree.
We assume a linearly increasing probability for each possible year of experience year ∈ [0,maxe] for the applicant, equal to

P (year) =
year + 1∑maxe
y=0 (y + 1)

(16)

The company’s state p is represented by a set of features focusing on the employees’ skills. These features consist of the average employee
potential P , the percentage of collected degrees, extra degrees, the combined years of experience and language entropy. We normalise all
features based on the desired final team size K, such that each applicant can impact the team as much as they would in a full team. We further
normalise the combined years of experience such that all features lie in the interval [0, 1]. Based on hired applicants, the company’s team
composition pt is implemented as the proportions of skill and diversity features. For example, the language diversity is represented by four
values [0.6, 0.4, 0.2, 0.1] indicating 60% of the spoken languages is Dutch, 40% is French, 20% is English and 10% is German. On these values
the entropy is calculated for the goodness score and reward. Therefore, the state does not contain a list of all employees, but does contain their
contributions to the team’s skills such that the agent can decide for a new candidate if they are a good fit. Given K the desired final team size
and k the number of employees (i.e., hired applicants), we define the company’s potential based on the degree d, extra degree e and experience
x each employee holds on average. Concretely, the potential of the employees follows a Gaussian with mean

P =
1

K

k∑
i=1

1

3
|{f i ∈ {d, e, x} : f i ̸= 0}| (17)

and a standard deviation of 0.01. For the estimated company potential given a new applicant, we use the same distribution given the assumption
that an applicant’s resume based on these features does not perfectly match the applicant’s potential once hired for the job.

Goodness score To define how suitable each candidate is for hire, we define an objective goodness score Gt ∈ [−1, 1] based on how the
estimated new company state p̂t+1 would differ from the current pt, should the applicant be hired:

Gt =
K

N

∑
ft∈pt

(f̂t+1 − ft) (18)

with N the number of skill features. Note that this goodness score is also noisy due to the noise in the current company potential and the
estimated new potential. Intuitively, the goodness score is higher for applicants who can improve the average potential, have the requested skills
and improve the language entropy of the team.

Action and reward At each timestep t, the agent must choose whether to reject or hire the applicant for a given state st. Given the chosen
action at for state st, the agent receives a reward rt based on the goodness score Gt of the presented applicant. Given the goodness score Gt

and threshold ϵ, the reward for hiring an applicant is

rt,hire = Gt − ϵ+N (0, 0.01) (19)

We add Gaussian noise to the reward under the assumption that the applicant’s qualification may differ slightly from the estimation of the
goodness score. This models the employer’s uncertainty about the suitability of hired applicants. The reward for rejecting an applicant is the
negative reward of hiring the applicant:

rt,reject = −rt,hire (20)

Transition function We define the transition function p : S ×R×S ×A → [0, 1] as the probability of encountering the next state st+1 and
reward rt given the current state st and action at. To mimic a realistic team composition over time, we allow employees to leave the company
based on real job transition probabilities corresponding to their age [53]. This provides the agent with the additional challenge of replacing lost
skills of leaving employees to keep the team balanced.
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Feedback signal To extend the MDP to an fMDP, we implement the feedback signal ft as the correct action ât based on the goodness score:

ft = ât (21)

B MultiMAuS fMDP
The fraud detection setting concerns online credit card transactions where multi-modal authentication is used to identify and reject fraudulent
transactions. We make the following adaptations to the MultiMAuS simulator [60], but keep their default parameters.

State Each hour, a set of customers, both genuine and fraudulent, attempt to make transactions, where each transaction is characterised by the
following features: card id, merchant id, amount, currency, country and the date and hour when the transaction is occurring. As the agent must
check transactions on an individual basis, we consider a new timestep for every transaction request. At each timestep t, the agent observes the
current state st containing information about the current company state, and a new transaction to process. We define two company state features:
the proportion of genuine to fraud transactions and the average customer satisfaction.

Reward + action For each transaction, the agent must decide whether or not to request an authentication from the customer. Based on the
chosen action at, the agent receives a reward

rt =

{
+1 if genuine authentication,

−1 otherwise
(22)

Based on this reward, always asking for authentication results in more fraudulent transactions being caught, as fraudsters are assumed to not
be able to provide a second authentication [60]. However, asking for authentication too often reduces the customer’s patience in completing
transactions. Furthermore, too many authentication requests make it more likely for customers to leave the credit card company. Therefore, the
agent must carefully select transactions to check to keep customer satisfaction high, while also catching as many fraudulent transactions as
possible.

Feedback signal The reward rt specifies the correctness of the action if the agent requests authentication. Consequently, if the reward is
positive the transaction is considered genuine, while a negative reward indicates an unsuccessful transaction, caused by a loss in commission or
by stolen money requiring the credit company to repay the losses to the client. To implement a feedback signal f , we infer the correctness when
authenticating to observe the amount of true positives and false positives.

C Pareto Conditioned Networks
A Pareto Conditioned Network (PCN) [46] applies supervised learning techniques to approximate all non-dominated policies within a single
neural network. PCN takes as input a tuple ⟨s, ĥ, R̂⟩, representing the observed state s, the desired return R̂ to reach at the end of the episode
and the desired horizon ĥ indicating the number of timesteps that should be executed before reaching R̂. Both ĥ and R̂ are chosen by the
decision maker at the start of an episode. Consequently, at every timestep t, the desired return is updated by the received reward R̂← R̂− rt
and the desired horizon is decreased by one timestep ĥ← ĥ− 1. PCN learns policies similar to classification techniques, where ⟨st, ht,Rt⟩ is
the input at timestep t and the chosen action at is the output. We employ a dense neural network with state, horizon and return embeddings,
with each consisting of a hidden layer of 64 neurons and a sigmoid activation function. Their outputs are fed through a fully connected neural
network of 2 layers with a RELU activation on the first layer. This last network produces outputs for each action.
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