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Abstract. In this paper we present two methods for plan compar-
ison in a multi-objective planning setting with multiple agents. We
use responsibility anticipation to define a form of regret-minimising
plan selection. We also define a notion of complete responsibility to
better handle responsibility for multiple outcomes. Finally, we per-
form a formal and experimental analysis of our comparison methods.

1 Introduction
Responsibility attribution [1, 2, 5, 10] is the process of determining
which agent or set of agents can be held responsible for a particular
outcome. This is a backward-looking process, meaning that while it
is useful for allocating praise or blame, it cannot be used for plan se-
lection, since responsibility for an outcome cam only be determined
once the outcome has occurred. Responsibility anticipation [18] is
the process of predicting which outcomes an agent may be responsi-
ble for if it performs a particular plan. This means it can be used in
plan selection, such as by ensuring that an agent cannot be responsi-
ble for some negative outcome.

In this paper we present multiple methods for plan comparison in
a multi-agent, multi-objective setting that make use of anticipated
responsibility. We use responsibility to define a notion of regret,
based on the goals or values that an agent is responsible for violating
(and responsible for satisfying). This allows us to define a symbolic
equivalent to regret-minimising plan comparison. We also introduce
a notion of complete responsibility to better handle responsibility for
multiple outcomes. We examine the axiomatic properties of our com-
parison rules as well as an experimental evaluation.

The rest of the paper is organised as follows, section 2 locates
our paper in its field and compares our work with some related ap-
proaches from the literature. Section 3 introduces our planning model
and section 4 defines our notions of responsibility and regret. Section
5 contains our plan comparison methods, section 6 does some anal-
ysis of these methods and section 7 describes our experiment and
discusses the results. Finally, section 8 concludes the paper and out-
lines directions for future work.

2 Related Work
This paper builds on our previous work [18] in which we define attri-
bution and anticipation for active, passive and contributive responsi-
bility. This is built on work by Lorini et al. [15] and Braham and van
Hees [4]. The current paper uses the notion of passive responsibility
to create plan comparison methods in a multiagent planning setting
with multiple objectives or values. Other approaches to formalising
responsibility have been developed by Alechina et al. [1], Chockler
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and Halpern [5, 10] and Baier et al. [2]. However, to the best of our
knowledge, ours is the only work to consider responsibility anticipa-
tion and its application to plan comparison.

We also show how passive responsibility can be used to define a
notion of regret, for use in regret minimisation, a notion first intro-
duced (independently) in decision theory by Savage [19] and Niehans
[17]. It was later introduced to game theory by Linhart and Radner
[14].

Our concept of regret is also similar to the notion of guilt intro-
duced by Lorini and Mühlenbernd [16]. Their model uses separate
numerical values to track both the individual utility of an agent for
some particular history, as well as the degree of ideality of that his-
tory (such as the utility of the worst-off agent). The guilt of an agent
in a history is the difference between the ideality achieved and the
best possible ideality (fixing the actions of all other agents). This is
similar to our notion of regret based on passive responsibility, but is
purely numeric instead of symbolic.

3 Model
In this section we introduce the planning framework for our model.

3.1 Agents, Actions and Histories

Our model requires a finite set of agents Agt and a countable set
of propositions Prop = {p, q, . . .}. From Prop we define a set of
states S = 2Prop , with elements s, s′, . . . Let Act = {a, b, . . .} be
a finite non-empty set of action names. To describe the actions taken
by all agents at a single time we introduce the notion of a joint action,
which is a function J : Agt −→ Act . The set of all joint actions is
JAct .

To trace the actions of agents and changing states over time we
define a k-history to be a pair H = (Hst , Hact) with Hst :
{0, . . . , k} −→ S and Hact : {0, . . . , k − 1} −→ JAct . The
set of k-histories is noted Histk. The set of all histories is Hist =⋃

k∈N Histk.

3.2 Multi-Agent Action Theory

For simplicity, we define our action theory as a function:

τ : S × JAct −→ S

We say that history H is a τ -compatible history for action the-
ory τ if each state respects the actions performed in the previ-
ous state. This means that for all t ∈ {0, . . . , k − 1}, Hst(t +
1) = τ(Hst(t), Hact(t)). The set of τ -compatible histories is noted
Hist (τ).



3.3 Planning Domains

Definition 1 (Multi-Agent Planning Domain). Multi-agent Planning
Domain (MPD) is a tuple ∇ = (τ, s0) where τ is an action theory
and s0 ∈ S is an initial state.

3.4 Action Sequences and Joint Plans

Now that we have defined a planning domain, we can define the no-
tions of action sequence and plan. Given k ∈ N, a k-action-sequence
is a function

π : {0, . . . , k − 1} −→ Act .

The set of k-action-sequences is noted Seqk. The set of all action
sequences is Seq =

⋃
k∈N Seqk. For a (non-empty) coalition of

agents J ∈ 2Agt \ ∅ we can define a joint k-plan as a function
Π : J −→ Seqk (if J is a singleton coalition we call Π an individual
plan). The set of joint k-plans for a coalition J is written PlanJ

k . The
set of all joint plans for J is PlanJ =

⋃
k∈N Plan

J
k .

Given a joint plan Π for coalition J and another coalition J ′ ⊆ J ,
we can write the sub-plan of Π corresponding to J ′ as ΠJ′

, we can
also write Π−J′

for sub-plan corresponding to J \ J ′. Given two
k-plans Π1 and Π2 for disjoint coalitions J1, J2, we write Π1 ∪ Π2

for the joint plan for J1 ∪ J2 such that (Π1 ∪ Π2)
J1 = Π1 and

(Π1 ∪ Π2)
J2 = Π2. Finally, given two plans Π1 and Π2, if there

exists some plan Π3 such that Π2 = Π1 ∪Π3 then we say that Π1 is
compatible with Π2.

We can now define the notion of the history generated by a joint
k-plan Π in the planning domain ∇ = (τ, s0). It is the τ -compatible
k-history along which the agents jointly execute the plan Π starting
at state s0. We write this as HΠ,∇.

3.5 Linear Temporal Logic

In our model, histories are temporal entities that are always finite
in length, therefore the most natural choice to describe properties of
histories is Linear Temporal Logic over Finite Traces [6, 7]. This
allows us to describe temporal properties such as “φ never occurs”
or “φ always occurs immediately after ψ”. We write the language as
LLTLf , defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | Xφ | φ U φ,

with p ranging over Prop. Atomic formulas in this language are
those that consist of a single proposition p. X and U are the op-
erators “next” and “until” of LTLf . Operators “henceforth” (G) and

“eventually” (F) are defined in the usual way: Gφ def
= ¬(⊤ U φ) and

Fφ
def
= ¬G¬φ. We define the semantics for X and U as follows,

the rest is the same as LPL+ (for t ∈ {0, . . . , k}).

H, t |= Xφ ⇐⇒ t < k and H, t+ 1 |= φ,

H, t |= φ1 U φ2 ⇐⇒ ∃t′ ≥ t : t′ ≤ k and H, t′ |= φ2 and

∀t′′ ≥ t : if t′′ < t′ then H, t′′ |= φ1.

3.6 Values and Goals

We assume that our agents will have multiple goals and/or values
that they wish to satisfy, which may have different priority levels.
We combine these into a single value base Ω which is simply a set
of LTLf -formulas. We let Ω

+
be the set Ω ∪ {¬ω : ω ∈ Ω}. To

represent the structure of Ω we assume the existence of a relation ⪯
on subsets of Ω

+
that indicates whether the satisfaction or violation

of a certain set of values is preferable to another. We also defineX ≺
Y as X ⪯ Y and Y ̸⪯ X . For example {ω1,¬ω2} ≺ {¬ω1, ω2}
indicates that it is more important to satisfy ω2 than ω1. In order for
our comparison methods to function correctly, we require that ⪯ is
transitive, reflexive, and strongly connected.

We define the relation on Ω
+

instead of Ω to allow us to distin-
guish cases where the value is violated and cases where the status of
the value is irrelevant (such as if the satisfaction or violation of the
value is already guaranteed).

Weighted Values A simple way of creating ⪯ for some value base
Ω is to assign each value ω ∈ Ω a numerical weighting V al(ω), [13].
The procedure to calculate ⪯ from this weighting is quite straight-
forward. Given a value set X we can calculate the utility of each set
by V al(X) = Σω∈XV al(ω) − Σ¬ω∈XV al(ω). Then we say that
X ⪯ Y if and only if V al(X) ≤ V al(Y ).

Note that there are many alternative ways to rank sets of values.
For some approaches from single-agent planning, see the work of
Bienvenu et al. [3], Dennis et al. [8] and Grandi et al. [9].

4 Responsibility, Regret and Anticipation
In this paper we focus purely on the causal aspects of responsibil-
ity. In our previous work [18] we defined notions of active, passive
and contributive causal responsibility. Active responsibility means
to cause an outcome to occur by guaranteeing that it happens. Pas-
sive responsibility means to allow an outcome to occur while being
able to prevent it (fixing the actions of all other agents). Contributive
responsibility means to be part of a coalition of agents who guar-
antee the outcome. For simplicity, this paper only considers passive
responsibility.

Definition 2 (Passive Responsibility). Let ∇ = (τ, s0) be an MPD,
i ∈ Agt an agent, and Π1 a joint plan. Let ω ∈ LLTLf . Then, we say
that i bears Causal Passive Responsibility (CPR) for ω in (Π1,∇) if
HΠ1,∇ |= ω and there exists some Π2 compatible with Π

−{i}
1 such

that HΠ2,∇ ̸|= ω.

An agent i is passively responsible for some outcome ω if by act-
ing differently it could have prevented ω, keeping fixed the initial
state and the actions of all other agents.

The idea of “regret” is meant to represent the gap between what
“could have happened” and what actually happened from the per-
spective of some agent. A simple notion of regret is to take the set
of all values (and violations of values) that the agent is passively re-
sponsible for. If the agent is passively responsible for a formula ω
this means that, fixing the actions of all other agents, they could have
ensured ¬ω.

Definition 3 (Regret). Given a history H , a planning domain ∇, a
value base (Ω,⪯), and an agent i, the regret set of i in H is the
lowest-ranked (according to ⪯) maximal subset of Ω

+
that i is pas-

sively responsible for.

An issue with the simple notion of regret is that if an agent is
passively responsible for φ1, φ2 and φ3, this does not mean that they
could have brought about ¬φ1 ∧¬φ2 ∧¬φ3, merely that they could
have brought about each ¬φi individually. The following definition
of responsibility more closely matches the sense of “responsible for
φ1 and φ2”.



Definition 4 (Complete Responsibility). Given a history H , a plan-
ning domain ∇, a value base (Ω,⪯), and a conjunction ω+ =

ω1 ∧ . . . ∧ ωn of elements of Ω
+

, we say that i is completely re-
sponsible for ω+ if H |= ω+ and i is passively responsible for
ω− = ω1 ∨ . . . ∨ ωn in H under ∇.

This means that if an agent is completely responsible for φ1∧φ2∧
φ3 if φ1∧φ2∧φ3 occurred and, fixing the actions of all other agents,
the agent could have brought it about that ¬φ1∧¬φ2∧¬φ3. We can
then use this notion of responsibility to define a notion of regret.

Definition 5 (Consistent Regret). Given a history H , a planning do-
main ∇, a value base (Ω,⪯), and an agent i, the consistent regret
set of i in H is the lowest-ranked (according to ⪯) maximal subset
of Ω

+
that i is completely responsible for.

All of the previous notions are defined retrospectively, meaning
that they can only be evaluated after a plan has been executed and
a history has been generated. This means that they are not useful
for plan comparison, as we want to be able to compare plans before
executing them. Therefore we introduce the notion of anticipation,
which means to perform a retrospective evaluation on one or more
possible outcomes. In other words, rather than executing a plan and
then evaluating the result, we evaluate all possible results of execut-
ing the plan. We can define anticipation for both regret and passive
responsibility.

Definition 6 (Regret Anticipation). Given an individual plan Π for
an agent i, a planning domain ∇ and a value base (Ω,⪯), the antici-
pated (consistent) regret set of i inH is the lowest-ranked (according
to ⪯) (consistent) regret set out of all histories H compatible with Π
in ∇.

Definition 7 (Passive Responsibility Anticipation). Given an indi-
vidual plan Π for an agent i and a planning domain ∇, we say that i
anticipates passive responsibility for some outcome φ if i is passively
responsible for φ in some history H compatible with Π in ∇.

5 Plan Comparison
We now present two notions of plan comparison based on notions
of responsibility (as regret is based on responsibility). Anticipation-
minimising comparison aims to minimise the set of values that the
agent could be responsible for violating (and maximise the set that
they could be responsible for satisfying) in all possible outcomes for
a given plan. Regret-minimising comparison (and consistent-regret-
minimising) comparison aims to minimise the set of values that the
agent is (consistently) responsible for in any single outcome.

Definition 8 (Anticipation-minimising comparison). Given two
plans Π1 and Π2 for agent i, a planning domain ∇ and a value base
(Ω,⪯), we say that Π2 is anticipation-minimising preferred to Π1 if
X1 ≺ X2 where X1 is the set of elements of Ω

+
that i anticipates

responsibility for in Π1 and mutatis mutandis for X2 and Π2.

Definition 9 (Regret-minimising comparison). Given two plans Π1

and Π2 for agent i, a planning domain ∇ and a value base (Ω,⪯),
we say that Π2 is (consistent-)regret-minimising preferred to Π1 if
X1 ≺ X2 where X1 is the anticipated regret set of Π1 and X2 is the
anticipated (consistent) regret set of Π2.

By minimising the worst-possible regret in the selected plan, the
agent should select a plan either matches or is close to the best out-
come for every possible joint plan of the other agents. This means

that the plan selected is robustly good regardless of the actions of
the other agents. Furthermore, while a regret-minimising agent may
sometimes get bad outcomes, they should only get bad outcomes
when the best possible outcome was also not very good.

For later comparison, we also present two very simple methods
of plan comparison, called optimistic and pessimistic comparison.
Optimistic comparison compares any two plans according to their
best-case outcome, and pessimistic comparison compares any two
plans according to their worst-case outcome.

Definition 10 (Optimistic Comparison). Given two plans Π1 and
Π2 for agent i, a planning domain ∇ and a value base (Ω,⪯), we
say that Π2 is optimistic-preferred to Π1 if X1 ≺ X2 where X1

is a highest-ranked (according to ⪯) set of values satisfied by some
history H compatible with Π1 in ∇ and mutatis mutandis for X2.

Definition 11 (Pessimistic Comparison). Given two plans Π1 and
Π2 for agent i, a planning domain ∇ and a value base (Ω,⪯), we
say that Π2 is pessimistic-preferred to Π1 if X1 ≺ X2 where X1

is a lowest-ranked (according to ⪯) set of values satisfied by some
history H compatible with Π1 in ∇ and mutatis mutandis for X2.

6 Analysis
In this section we will analyse and compare the properties of some of
our comparison methods. A minimal requirement for any comparison
method is that it respects strong dominance, as outlined by Horty
[12]. This means that for individual plans Π1 Π2 for agent i, if for
every possible joint plan ΠX for Agt \{i}, the outcome for Π1∪ΠX

is better (according to ⪯) than the outcome of Π2 ∪ ΠX , then Π1

should be preferred to Π2. In other words, if the outcome for Π1 is
always better than Π2 regardless of the actions of other agents, then
Π1 should be preferred.

We will now show that anticipation-minimising comparison does
not respect strong dominance between plans. Consider the follow-
ing example where we compare plans Π1 and Π2 for agent i where
Agt = {i, j}. We suppose that there are exactly three plans (Π′

1, Π′
2

and Π′
3) available to j and that Ω = {ω1, ω2, ω3} where (in terms of

importance) ω1 > ω2 > ω3.

Π1 Π2

Π′
1 ¬ω1 ¬ω1 ∧ ¬ω2

Π′
2 ¬ω2 ¬ω1 ∧ ¬ω2

Π′
3 ¬ω3 ¬ω1 ∧ ¬ω2

In this example Π2 is strongly dominated by Π1, since ¬ω1∧¬ω2

is worse than simply ¬ω1 or ¬ω2 and is worse than ¬ω3 as ω3 is less
important than ω1 and ω2. However, Π2 is anticipation-minimising
preferred to Π1 because Π2 only anticipates responsibility for ¬ω1

and ¬ω2 whereas Π2 anticipates responsibility for ¬ω1, ¬ω2 and
¬ω3. This shows that the failure of anticipation-minimising compar-
ison is that it fails to consider the values that may be violated or that
the agent may be responsible for violating in specific individual out-
comes, rather than overall.

We can also show that regret-minimising comparison and
consistent-regret-minimising comparison also do not guarantee to re-
spect strong dominance. Consider another two-agent example with
plans Π1, Π2 for i and Π′

1 for j. We let Ω = {ω1, ω2, ω3}
and suppose that {¬ω2, ω3} ≺ {ω2,¬ω3} but {ω1, ω2,¬ω3} ≺
{ω1,¬ω2, ω3}.

Π1 Π2

Π′
1 ω1 ∧ ω2 ω1 ∧ ω3



In this case Π2 dominates Π3, since both forms of regret-
minimising comparison do not take into account that the relative
ranking of ω2 and ω3 is changed by the presence of ω1. In sce-
narios where this behaviour does not occur both forms of regret-
minimising comparison do respect strong dominance, though more
work is needed to determine exactly when this happens.

Using a similar example, we will now show that regret-minimising
comparison is different to consistent-regret-minimising comparison.

Π1 Π2 Π3 Π4

Π′
1 ω1 ∧ ω2 ω1 ∧ ω2 ω1 ∧ ω2 ω1 ∧ ω4

∧ω3 ∧ ω4 ∧ω3 ∧ω3

Π′
2 ω1 ω2 ω3 ω1 ∧ ω4

In this example we use numerical utilities for values where ω1 =
ω2 = ω3 = 10 and ω4 = 6. Now we show regret:

Π1 Π2 Π3 Π4

Π′
1 26 14 14 -14

Π′
2 -16 -16 -16 -4

Now we show consistent regret:

Π1 Π2 Π3 Π4

Π′
1 0 -6 -6 -20

Π′
2 -6 -6 -6 0

In this example consistent-regret-minimising comparison would
pick either Π1, Π2 or Π3 whereas regret-minimising comparison
would pick Π4.

7 Experiment
7.1 Setup and Results

To test these plan comparison methods against each other we set up a
simple experiment. The experiment involved two agents with four ac-
tions and four shared values. For simplicity, we consider only plans
of length 1. To simulate the action theory and initial state we ran-
domly determine which values are satisfied for each possible pair of
actions (this is re-randomised for every iteration).

Experiment Agent A B C D
1 1 40 10 0 -50

2 40 10 0 -50
2 1 40 10 0 -50

2 40 0 10 -50
3 1 10 40 0 -50

2 10 0 40 -50

Table 1. Value weightings for each agent in each experiment.

We run three different experiments with three different value
weightings. The first is identical for both agents, designed to pro-
mote maximum cooperation. The second weighting has some dis-
agreement between values while the third has significant disagree-
ment.

The tables below are generated by running 100,000 iterations with
each possible pairing of agent types (optimistic, pessimistic, regret-
minimising, consistent-regret-minimising and random). The random
agent is included both to see how well each type of agent deals with
unpredictable or irrational agents, as well as to provide a baseline
result. The code for this experiment can be found at: https://pastebin.
com/KUbQTwLa.

Agent Type Opt Pess CRM RM Rand
Opt 33.2 21.4 29.3 24.3 9
Pess 21.4 14.6 17.8 17.3 12.3
CRM 29.4 18 21.9 20.4 13.7
RM 24.2 17.3 20.2 19.5 13.1
Rand 9.2 12.4 13.6 13.2 -0.1

Table 2. Results of Experiment 1 (agent 1 on left, agent 2 on top)

Agent Type Opt Pess CRM RM Rand
Opt 24 21.1 26.9 23.7 9.1
Pess 20.5 15.5 18 17.7 12.4
CRM 26.4 18.1 21.5 20.4 13.6
RM 23.2 17.8 20.2 19.6 13.3
Rand 8.3 11.9 13.3 12.7 0

Table 3. Results of Experiment 2

Agent Type Opt Pess CRM RM Rand
Opt 19 18 21 19.3 8.9
Pess 16.4 15.9 17.3 16.7 12.3
CRM 20.1 18.7 20.3 19.3 13.7
RM 18.2 18.3 19.6 19 13.3
Rand 5.5 8.1 8.9 8.3 0

Table 4. Results of Experiment 3

We also ran a brief experiment (table 5) with a joint planning setup
that was able to choose a single joint action. This planner would seek
to maximise the utility of the worst-off agent, breaking ties randomly.
This is provided as an approximate upper bound for single-agent
planning.

7.2 Discussion

For experiments 1 and 2, the optimistic agent was the best performing
against every non-random agent, suggesting that optimistic agents
perform effectively when their values align exactly or closely with
those of other agents and the other agents behave at least some-
what rationally. However, consistent-regret-minimising agents per-
formed the best in experiment 3 (except that Opt-CRM performed
better than CRM-CRM, which deserves investigation), and consis-
tently performed the best when paired with random agents, sug-
gesting that consistent-regret-minimising agents perform effectively
when their values differ significantly from other agents or when other
agents act irrationally.

Finally, the joint planning experiment in table 5 shows that even
in the best case for individual planning (Opt-Opt in table 2), joint
planning is significantly better.

8 Conclusions and Future Work

In this paper we have introduced two methods for plan comparison
in a multiagent multi-objective setting using anticipated passive re-
sponsibility. This approach uses regret minimisation without requir-
ing numerical utilities to be assigned to values. We have also intro-
duced the notion of complete responsibility to better handle respon-
sibility for multiple values. We have formally analysed our methods
and performed an experimental evaluation relative to other options.

There are several directions open for future research. In particular,
we can further develop our methods for plan comparison using re-
sponsibility, or consider alternatives. For example, instead perform-
ing regret minimisation once we could adapt our methods to use iter-
ated regret minimisation as introduced by Halpern and Pass [11].

https://pastebin.com/KUbQTwLa
https://pastebin.com/KUbQTwLa


Experiment Utility
1 48.5
2 47.3
3 44.4

Table 5. Average utilities achieved with joint planning.

We would also like to perform a more thorough axiomatic analysis
of our comparison methods, as well as a more thorough experimental
analysis. As the current paper is a work-in-progress the experiment is
quite preliminary, as it tests only one-shot plans in a fully randomised
domain. It would be interesting to run the experiment in a multi-
step planning with more realistic domains and more than two agents.
There are also other approaches in the literature that we would like
to evaluate against.

Finally, while the model is currently in a purely theoretical state,
it would be good to investigate how it could be applied in real-world
planning scenarios. This will require both a complexity analysis of
the framework (likely to be at least NP-hard, in line with classical
planning [20]) and the creation of efficient methods for computing
regret-minimising plans.
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