
A Deep Multi-Objective Reinforcement Learning
Approach for Infrastructural Maintenance Planning with

Non-Linear Utility Functions
Jesse van Remmerdena;*, Maurice Kenterb, Diederik Roijersb,c, Yingqian Zhanga, Charalampos Andriotisd

and Zaharah Bukhsha

aDept. of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology
bCity of Amsterdam

cAI lab, Vrije Universiteit Brussel
dFaculty of Architecture and the Built Environment, Delft University of Technology

ORCiD ID: Jesse van Remmerden https://orcid.org/0009-0005-1966-6907,
Maurice Kenter https://orcid.org/0000-0001-7834-089, Diederik Roijers https://orcid.org/0000-0002-2825-2491,

Yingqian Zhang https://orcid.org/0000-0002-5073-0787,
Charalampos Andriotis https://orcid.org/0000-0002-0140-5021,

Zaharah Bukhsh https://orcid.org/0000-0003-3037-8998

Abstract. This paper explores the potential of multi-objective rein-
forcement learning (MORL) in infrastructural maintenance planning,
an area traditionally dominated by single-objective RL approaches.
In this paper, we introduce the Multi-Objective Deep Centralized
Multi-Agent Actor Critic (MODCMAC), a MORL method for main-
tenance planning capable of optimizing a policy with a known non-
linear utility function under the Expected Scalarized Return (ESR)
criterion, while the state is only partially observable. Previous single-
objective RL methods had to combine multiple objectives, such as
risk and cost, into a singular reward signal through reward-shaping.
In contrast, MODCMAC can optimize a policy for multiple ob-
jectives directly, even when the utility function is non-linear. We
evaluated MODCMAC using a utility function based on the Fail-
ure Mode, Effects, and Criticality Analysis (FMECA) methodology,
which used the failure probability and cost as input. The evaluation
was done within an environment requiring optimizing a maintenance
plan for a historical quay wall. The performance of MODCMAC
was compared against a Belief-State-Based (BSB) policy with de-
terministic or stochastic action selection. Our findings indicate that
MODCMAC outperforms the BSB policy. The code can be found at
https://github.com/jesserem/MODCMAC.

1 Introduction

In September 2020, a quay wall collapsed along the Grimburgwal
in the center of Amsterdam [12]. The quay wall, dating from 1870,
consisted of many large wooden components and was at its time of
collapse 150 years old. While old, it was not the oldest quay wall
in the city, signifying that other factors contributed to its collapse
besides age. Because of these many factors, maintaining quay walls
is a difficult and essential task for the city, and much work is currently

∗ Corresponding Author. Email: j.v.remmerden@tue.nl

being done to maintain the quay walls.1

One strategy for performing maintenance on large assets such as
quay walls is to define a proactive/reactive maintenance policy. This
would entail pre-scheduling inspections and maintenance while also
responding to signals (such as deformation measurements from satel-
lites) with inspections and maintenance. This approach has two key
issues: incidents occur at the expense of safety, and no accurate in-
sight is obtained into the structural condition of the quay wall, lead-
ing to inefficient maintenance planning. Meanwhile, the capacity for
inspections and maintenance is scarce, and it is expensive to perform
inspections and maintenance. In this paper, we work towards a dif-
ferent approach to more effectively schedule the scarce and costly
inspections and maintenance: prescriptive maintenance based on a
decision-theoretic model [19]. This type of modeling has been shown
to be capable of reducing costs in the maintenance of other large as-
sets [2], and is, therefore, a promising research direction for quay
wall maintenance.

A key insight behind decision-theoretic prescriptive maintenance
is to explicitly take uncertainty about the condition state of the asset
into account while deciding the best course of action. This is espe-
cially important in the case of quay walls, where, due to their very
nature, a large part of them is located underwater and under a street.
It is, therefore, difficult to fully observe the state of a quay wall’s
components and detect failed components. Furthermore, the state of
the wooden components has been known to show a large variance
across different quay walls. Taking this uncertainty into account is
essential in forming an effective maintenance strategy.

A complicated but essential factor when performing maintenance
on quay walls is how the prioritization of maintenance tasks is per-
formed in practice. Specifically, this is not done based on one scalar
reward signal (such as costs), as is typical in decision-theoretic mod-

1 For an overview of what is currently being done in terms of maintenance,
see https://www.amsterdam.nl/projecten/kademuren/ (in Dutch).

els. This is, for example, reflected in the Failure Mode, Effects and
Criticality Analysis (FMECA) methodology, where the utility (criti-
cality score) of the different ways an asset can fail depends on both
costs and risk (as well as other factors such as environment effects),
which are combined in a non-linear manner. It is, therefore, key that
such non-linear considerations can be optimized using a decision-
theoretic approach as well.

In this paper, we formulate a multi-objective partially observable
Markov decision process model (MOPOMDP) for the maintenance
planning of quay walls. This MODPOMDP is formulated not only
to explicitly handle uncertainty about the state of the components
of the quay wall but also to model different reward signals that can
be taken into account in a non-linear fashion. To do so, we propose
a new method that we call Multi-Objective Deep Centralized Multi-
Agent Actor-Critic (MODCMAC), which is based on the DMCAC [2]
and MOCAC [14] algorithms for maintenance planning and multi-
objective reinforcement learning respectively. We show experimen-
tally that this method can effectively optimize for a non-linear utility
function inspired by the FMECA methodology. We further note that
our method can be used to incorporate all relevant objectives that an
asset manager would need to take into account.

2 Background
In multi-objective reinforcement learning (MORL), the environ-
ment and interactions are formulated as a multi-objective Markov
decision process (MOMDP) [18]. This is the tuple MMOMDP =〈
S,A, T, R⃗, γ

〉
, in which S and A describe the action and state

space respectively. T : S×A×S → [0, 1] is the transition function.
R⃗ : S × A × S → Rd is the reward function. This reward function
returns a vector of size d, in which d is the number of objectives that
need to be optimized.

Within MORL, we can either optimize for an unknown or a known
utility function [9]. In our problem setting, we will have a known
utility function. A utility function u : Rd → R is a mapping of
the reward vector r⃗t to a singular value. It is essential for the utility
function to be monotonically increasing, meaning that if one of the
objectives increases, the utility return can never decrease. This seems
to make any MO problem with a known utility function be able to
learn by a single-objective RL method. However, this is not true when
the utility function is non-linear.

SER and ESR criterion There are two methods of optimizing
over a known non-linear utility function in MORL [9], namely the
Scalarized Expected Return (SER) criterion, which is when the util-
ity function is applied on the expected return:

π∗ = arg max
π

u

(
E

[
H∑
t=0

γtr⃗t|π, s0

])
(1)

The other criterion is the Expected Scalarized Return (ESR), which
tries to maximize the expected return of the utility function:

π∗ = arg max
π

E

[
u

(
H∑
t=0

γtr⃗t|π, s0

)]
(2)

The difference is that while SER is concerned with the utility of the
average outcome, ESR takes the utility over every single roll-out of
the policy (and only then takes the average). For our approach, we
will use the ESR criterion because we cannot afford to have a high
failure probability in certain episodes, even though, on average, the

probability is low. However, no standard single-objective RL method
can optimize with this criterion due to the Bellman equation being
invalid under those conditions as a non-linear utility function does
not distribute over summations and expectations.

Partially Observable Markov Decision Process (POMDP) A
common problem when applying RL to maintenance problems is
that the true state of the structure is not fully known and can only
be partially observed. Therefore, most maintenance environments
are not formulated through an MDP but with a Partially Observ-
able Markov decision process (POMDP) [17]. A POMDP is a tu-
ple MPOMDP = ⟨S,A,Ω, T,O,R, γ⟩. One of the main differences
between an MDP and a POMDP is that with a POMDP, the agent re-
ceives an inaccurate observation ot ∈ Ω of the current state st instead
of the state itself. The observation space Ω contains all the possible
observations the agent can receive about the state space. Lastly, the
observation function O : S×A×Ω → [0, 1] returns an observation
ot, based on the current state st.

Due to the inaccuracy of the observation, a standard RL method
will most likely result in a sub-optimal policy. A solution for this
is to add some form of memory that keeps a belief over the current
state bt. If the state-space is discrete, the belief can be formulated
as a vector of size |S|. This belief is then updated at each timestep
through a Bayesian Update:

b(st+1) = p (st+1|ot+1, at,bt)

=
p (ot+1|st+1, at)

p (ot+1|bt, at)
∑
st∈S

p (st+1|st, at) b(st)
(3)

Multi-Objective Partially Observable Markov Decision Pro-
cess (MOPOMDP) In previous paragraphs, we discussed both the
multi-objective Markov decision process (MOMDP) and the partially
observable Markov decision process (POMDP). For our method, we
will use a multi-objective partially observable Markov decision pro-
cess (MOPOMDP) [16]. A MOPOMDP is a combination of the
partially observable Markov decision process (POMDP) [17] and a
multi-objective Markov decision process (MOMDP) [9], and is de-
fined in definition 1.

Definition 1 A multi-objective partially observable Markov Deci-
sion Process is a tuple MMOPOMDP =

〈
S,A,Ω, T,O, R⃗, γ

〉
. S is

the state space, A is the action space, Ω is the observation space,
T : S×A×S → [0, 1] is the transition function, O : S×A×Ω →
[0, 1] is the observation function, R⃗ : S × A × S → Rd is the re-
ward function that returns a vector of d values for each objective,
and γ ∈ [0, 1] is the discount factor.

In our method section, we will discuss how we formulated our main-
tenance problem as a MOPOMDP.

2.1 MOCAC

Previously, we discussed how no standard RL method could opti-
mize with the ESR criterion if the utility function is non-linear due
to the Bellman Equation being invalidated in this situation. MOCAC
(Multi-Objective Categorical Actor-Critic) [14] can overcome this
invalidation utilizing a distributional critic.

V (st) =
∑
i

zipi(st) (4)

Equation 4 shows how the distributional critic functions by learning
the distribution p of the future returns. The support vector z is a set of
c bins, such that z = {zi = VMIN + i∆z : 0 ≤ i ≤ c}, with ∆z :=
VMAX−VMIN

c−1
. With VMIN being the minimum expected return and VMAX

being the maximum.
However, the critic in MOCAC outputs a multivariate distribution

instead of a univariate probability distribution. This is because the
critic learns the probabilities of multiple objectives rather than just
one. Therefore, a support atom z⃗i is not a singular value but a vec-
torial return of the objectives. Reymond et al. [14] modified how z⃗
is created by providing separate VMIN and VMAX for each objective
while maintaining the same number of bins c for each objective. Each
atom z⃗i is then calculated by:

z⃗i = V⃗MIN +∆z⃗i

with ∆z⃗i :=
V⃗MAX − V⃗MIN

c− 1

(5)

Because each objective has c bins, the critic learns a discrete distri-
bution of cd. MOCAC uses this distribution with the accrued reward
(R⃗−

t =
∑t−1
k=0 γ

k r⃗k) as input for the utility function u:

ut =
∑
j

u
(
R⃗−
t + γtz⃗j

)
pj(st) (6)

This allows Reymond et al. [14] to train the actor through the loss
function found in equation 7. In it, Reymond et al. use the utility
to calculate the advantage A(at, st) = Q(at, st) − V (st), which
helps determine how much better an action is compared to the other
actions.

L(π) =−
H∑
t=0

A(st, at) log (πθ(at|st))

=−
H∑
t=0

(u
(
R⃗−
t + γt (r⃗t + γVψ(st+1))

)
− u
(
R⃗−
t + γtVψ(st)

)
) log (πθ(at|st))

=−
H∑
t=0

(
∑
j

u
(
R⃗−
t + γt (r⃗t + γz⃗j)

)
pj(st+1)

−
∑
j

u
(
R⃗−
t + γtz⃗j

)
pj(st)) log (πθ(at|st))

(7)

Moreover, Reymond et al. [14] argue that conditioning on the ac-
crued reward R⃗−

t by adding it to the state space is needed to get an
optimal policy in environments with stochastic reward schemes.

2.2 DCMAC

A recent DRL approach that utilizes a POMDP and a Bayesian Belief
for infrastructure maintenance is DCMAC (Deep Centralized Multi-
Agent Actor Critic) [2]. DCMAC optimizes maintenance for a multi-
component asset, in which, for each component, an individual action
is taken. This would typically increase the size of the action space
significantly. Therefore, Andriotis et al. use a factorized action space
with a multi-head actor network. Due to the use of multi-head, a sum-
mation of all the log probabilities produced by heads has to be taken
to calculate the policy loss. Furthermore, Andriotis et al. introduced
truncated importance sampling wt = min

(
c, π(at|st)
µ(at,st)

)
to address

the high variance that log summation may introduce. This resulted in

the modified policy loss function, as shown below, with N being the
number of components:

L(π) = −wt

(
N∑
j=1

log
(
π
(j)
θ

(
a
(j)
t |bt

)))
At (8)

3 Method
When using deep RL to plan a multi-component system’s mainte-
nance, we must address the curse of dimensionality of the action
space. One solution to this curse of dimensionality is to use a fac-
torized action space through DCMAC as proposed by Andriotis et
al. [2]. However, DCMAC can optimize for one objective, while in
real-world settings, most maintenance plans are made to optimize
multiple objectives, such as maximizing the structure availability and
minimizing the maintenance impact on the environment. A common
approach is to translate these objectives to a cost, which is then com-
bined in a single scalar reward value [2, 8, 11]. If one seeks to include
methodologies that are used in maintenance planning, such as the
FMECA methodology, extensive reward-shaping is needed through
domain knowledge. We propose Multi-Objective Deep Centralized
Multi-Agent Actor Critic (MODCMAC), a MORL method for main-
tenance planning, based on MOCAC [14] and DCMAC [2].

We use the definition of MOPOMDP (see definition 1) to formu-
late our maintenance problem, which is both multi-objective and par-
tially observable:

• st ∈ S The state-space is discrete, with the N components being
able to be in one of |Scomp| states and a degradation rate τ

(i)
t for

each component.
• at ∈ A The action-space is the combination of actions for the

N component, which is Acomp,i ∈ {nothing, repair, replace} with
1 ≤ i ≤ N , and the global action for the whole structure, which
is Aglobal ∈ {nothing, inspect}.

• ot ∈ Ω The observation-space is equal to the state-space, except
τ , in that the observation for each component can be one of |Scomp|
states.

• T : S × A × S → [0, 1] At each timestep t, the component has
a probability of either staying in a specific state or transitioning to
a worse state, based on τt and the associated transitioning matrix.
If a repair action is taken, the component condition is improved,
which is depicted by moving one state up, and if the replace action
is taken, the component is set to the best state, and τ is set to 0.

• O : S × A × Ω → [0, 1] The received observation is based on
aglobal
t . If the nothing action is taken, the observation will be of low

accuracy representation of the state. If the inspect action is taken,
the state will be fully observed.

• R⃗ : S × A × S → R2 The reward vector consists of two val-
ues: cost (rc), which represent the monetary cost of taking certain
actions, and failure probability (rf) which represent the failure
probability. We calculate rf through log (1− pf), with pf being
the failure probability.

Due to the partial observability of the state, we introduce a belief
bt over the states. We update this belief with the newly received
observation ot through a Bayesian update as seen in equation 3 [2].

In our MOPOMDP formulation, we stated that the failure prob-
ability reward is the log probability rf = log (1− pf). This equa-
tion is based on a few key considerations. The first is that the utility
function uses the episodic return as input, and we cannot add two in-
dependent calculated probabilities together. However, we know that

log (x ∗ y) = log (x)+log (y), and we can return the log-probability
to a normal probability through the exponent p = elog (p). More-
over, we treat the failure probability at each timestep as an inde-
pendent event. This means that we can add the probabilities through
p = 1 −

∏H
i=0 (1− pi). The main issue with this is that in RL, the

episodic return is a summation, but by using the log probability in-
stead of the normal probability, we can add the failure probability
from each timestep because:

1− e
∑

i log (1−pi) = 1−
∏
i

1− pi (9)

FMECA Utility Function Our utility function u evaluates the
performance of MODCMAC by mapping the vectorial return to
a preference score. We based our utility function on the Failure
Mode Effect and Criticality Analysis (FMECA) methodology [4].
This FMECA methodology evaluates particular failure modes of an
instance and the consequences when those failure modes occur. The
goal of FMECA, in a maintenance planning setting, is to determine
the most optimal maintenance plan that limits the probability that a
failure mode occurs while ensuring that other objectives are also op-
timized. Within FMECA, a wide range of objectives can be used;
however, in our setting, we will focus only on the failure probability
and the cost as the objectives.

The input of our utility function is the return R⃗ of the cost reward
Rc =

∑H
t rc and failure probability reward Rf =

∑H
t rf . We cal-

culate the failure probability of the whole episode using Rf through:

pf = 1− eRf (10)

Within the utility function, we have the following constants: The
maximum allowed cost Cmax and failure probability Fmax before
a penalty P is added. To see if the value of either return exceeds its
maximum, we use the following formulas:

pencost(Rc) =

{
1 if Rc > Cmax

0 otherwise
(11)

penrisk(pf) =

{
1 if pf > Fmax

0 otherwise
(12)

We then calculate the utility of the cost and the failure probability as:

cutility(Rc) = 6 ∗ log10
(
1 +

Rc
Cmax

∗ 10
)
+ P ∗ pencost(Rc)

(13)

futility(pf) = 6 ∗ log10
(
1 +

pf
Fmax

∗ 10
)
+ P ∗ penrisk(pf) (14)

One major adjustment that we made in the utility function, compared
to the FMECA methodology, on which we base our utility function,
is that we employed logarithm to base 10 (log10) Normally, in the
FMECA methodology, each objective is classified into one of six bins
to compute its utility score. The first five bins incrementally assign
scores from one to five, while the last bin gives a score of ten; lower
scores are preferable. Notably, each bin’s range decreases logarithmi-
cally from the worst to the best bin. However, this binning approach
can potentially prolong MODCMAC’s training time. It may either
trap the process in a local optimum, taking longer to escape, or, in
the worst-case scenario, prevent escaping altogether. Therefore, we
used a logarithm for smoother score growth to mitigate the risk of
this happening.

u = − (max (1, cutility(Rc))×max (1, futility(pf))) (15)

Figure 1: The network architecture of MODCMAC. The critic net-
work is a four-layer network that outputs the multivariate distribution
of the return. The actor network has one shared input layer and N+1
heads, where N is the number of components. Each of these heads
has two layers, and the final layer outputs the action probabilities

Equation 15 calculates the last step of the utility. We make the util-
ity negative because, within the FMECA method, a lower FMECA
score is preferred. We also ensure that u never can be lower than 1,
which is the minimum score in FMECA. Moreover, if we would not
set both cutility and futility to at least 1, MODCMAC would likely learn
to either do no maintenance at all or maximize maintenance, such
that the risk stays 0 because that would result in a utility score of 0.

3.1 Multi-Objective Deep Centralized Multi-Agent
Actor-Critic

Our proposed method, Multi-Objective Deep Centralized Multi-
Agent Actor-Critic (MODCMAC), is based on DMCAC [2] and
MOCAC [14], both actor-critic methods. Combining these methods
would allow us to overcome the curse of dimensionality of action
space by using the actor network of DCMAC and the ability to di-
rectly optimize over a non-linear utility function in an ESR setting
by using the critic network of MOCAC. This section will focus on
how we integrated both methods into MODCMAC.

The input for MODMCAC is the tuple
(
bt, i, R⃗−

t

)
. The first value

is the belief bt at timestep t, which we update through equation 3,
i is the normalized timestep i = t

H
, with H being the horizon of

the episode. We included it based on how DMCAC [2] uses it to sig-
nify the development of the deterioration rate τ . Lastly, we included
the accrued reward R⃗−

t as necessitated by the muli-objective setting
under the ESR with a non-linear utility [14].

Previously, we explained how the policy loss is calculated for DC-
MAC (equation 8). Within MODCMAC, we added an additional
head for global actions of the structure πglobal

(
aglobal
t |st

)
. We ad-

justed equation 8 such that this global head is included in the loss
calculation:

L(π) = −wt((

N∑
j=1

log
(
π
(j)
θ

(
a
(j)
t |bt

))
+ log

(
πglobal
θ

(
aglobal
t |bt

))
)At

(16)

The loss calculation in equation 16 is not modified for a multi-
objective environment and does not include the normalized deteri-

oration rate i and the accrued reward R⃗−
t . Therefore, we combine

this loss function with the one found in equation 7. This results in the
policy loss for MODCMAC being:

L(π) =−
H∑
t=0

wt(u
(
R⃗−
t + γt

(
r⃗t + γVψ

(
bt+1, it+1, R⃗

−
t+1

)))
− u
(
R⃗−
t + γtVψ

(
bt, it, R⃗

−
t

))
)

∗ (

(
N∑
j=1

log
(
π
(j)
θ

(
a
(j)
t |bt, it, R⃗−

t

)))

+ log
(
πglobal
θ

(
aglobal
t |bt, it, R⃗−

t

))
)

(17)

Our implementation of the critic network is essentially a repli-
cation of MOCAC, maintaining its core components, including the
computation of loss and other significant attributes [14]. However,
by utilizing this critic network in combination with the multi-head
actor network approach of DCMAC, we had to make significant ad-
justments to the policy loss calculation (equation 17).

Loss = L(π) + cvalueL(V)− centropyH(π) (18)

Within DCMAC, the policy loss and the value loss are calculated
and applied separately, and it uses a decaying epsilon-greedy strat-
egy for exploring [2]. We combine both losses, similar to MOCAC
[14] (equation 18). In it, Reymond et al. use the entropy and the en-
tropy coefficient centropy for exploring, and the value coefficient cvalue,
which indicates the importance of the value loss. Tuning the value
coefficient is more important if the critic and actor share layers.

4 Experiments and results

Environment Details We tested MODCMAC on a maintenance
planning problem, which is based on previous research [2, 3]. We
adjusted the simulation environment to model a simplified version
of a section of a historical quay wall in Amsterdam. We model
the agent to plan maintenance on the wooden components of a
section of a quay wall. These components consist of nine poles
{comp1, ..., comp9}, three pile cabs {comp10, comp11, comp12},
and one floor {comp13}. The total number of components is N =
13. For each type of component, we have two degradation matrices
(as shown in equation 19 and 20 for the poles, equation 21 and 22
for the pile cabs, and equation 23 and 24 for the floor), one when the
degradation rate τ = 0 and one when the degradation rate is τ = 50,
which is the episode length.

Dpole
τ=0 =

0.983 0.0089 0.0055 0.0025 0.0001
0 0.9836 0.0084 0.0054 0.0026
0 0 0.9862 0.0084 0.0054
0 0 0 0.9917 0.0083
0 0 0 0 1

 (19)

Dpole
τ=50 =

0.9713 0.0148 0.0093 0.0045 0.0001

0 0.9719 0.0142 0.0093 0.0046
0 0 0.9753 0.0153 0.0094
0 0 0 0.9858 0.0142
0 0 0 0 1

 (20)

Dpile cab
τ=0 =

0.9748 0.013 0.0081 0.004 0.0001

0 0.9754 0.0124 0.0081 0.0041
0 0 0.9793 0.0125 0.0082
0 0 0 0.9876 0.0124
0 0 0 0 1

 (21)

Dpile cab
τ=50 =

0.9534 0.0237 0.0153 0.0075 0.0001

0 0.954 0.0231 0.0152 0.0077
0 0 0.9613 0.0233 0.0154
0 0 0 0.9767 0.0233
0 0 0 0 1

 (22)

Dfloor
τ=0 =

0.9848 0.008 0.0049 0.0022 0.0001

0 0.9854 0.0074 0.0048 0.0024
0 0 0.9876 0.0075 0.0049
0 0 0 0.9926 0.0074
0 0 0 0 1

 (23)

Dfloor
τ=50 =

0.9748 0.013 0.0081 0.004 0.0001

0 0.9754 0.0124 0.0081 0.0041
0 0 0.9793 0.0125 0.0082
0 0 0 0.9876 0.0124
0 0 0 0 1

 (24)

We interpolated the degradation matrices for τ = 1 to τ = 49,
through the following equation:

Pτ=i = Pτ=0+
i

50− 1
(Pτ=50 − Pτ=0) for i = 1, 2, ..., 49 (25)

Our state space is discrete, with each component having five possible
condition states. At each timestep t, the component either stays in
the same state or transitions to a worse state, except for the last state,
which is the failed state. The degradation rate also increases by one
τt+1 = τt + 1.

In our environment, we have modeled the three most occurring
failure mechanisms found in the quay walls in Amsterdam. Each
of these mechanisms yields a failure probability, determined by the
number of components in a failed state corresponding to that partic-
ular mechanism.

With each failure mechanism, a set g of one or more components is
involved; each failure mechanism can have multiple sets g ∈ G, and
sets can share components. The probability of a failure mechanism
occurring depends on the number of failing components in g.

The first failure mechanism involves the breaking of wooden
poles. In this context, three poles can share a mutual relationship.
The probability of failure for this mechanism is as follows:

Fpoles(g) =

0.12 # {failure ∈ g} = 1
0.20 # {failure ∈ g} = 2
0.60 # {failure ∈ g} = 3
0 otherwise

(26)

The second failure mechanism occurs when the pile cabs are in a
failed state. The probability of this occurring is significantly higher if
two adjacent pile cabs fail. The failure probability for this mechanism
is:

Fpile cabs(g) =

0.23 # {failure ∈ g} = 1
0.53 # {failure ∈ g} = 2
0 otherwise

(27)

The final mechanism pertains to the failure of the wooden floor. This
particular mechanism is associated with a single component.

Ffloor(g) =

{
0.15 # {failure ∈ g} = 1
0 otherwise

(28)

Each failure mechanic can be associated with multiple groups of
components. We treat each failure mechanism as an independent
event. Therefore, the final failure probability is calculated through:

pf = 1−
∏

gp∈Gpoles

(1− Fpoles(gp))

∏
gc∈Gpile cabs

(1− Fpile cabs(gc))

∏
gf∈Gfloor

(1− Ffloor(gf))

(29)

In our experiments, we used the following component sets for the
poles (Gpoles), pile cabs (Gpile cabs), and floor (Gfloor):

Gpoles = { {comp1, comp2, comp3} ,
{comp4, comp5, comp6} ,
{comp7, comp8, comp9}}

Gpile cabs = { {comp10, comp11} ,
{comp11, comp12}}

Gfloor = { {comp13}}

(30)

The cost of repair and replacement is based on the percentage of
full replacement of the quay walls. A repair is always 0.25 times
the replacement cost. We use the information given by the city of
Amsterdam to determine the following distribution of replacement
cost of each type of component: Replacing a pole is 0.4× 1

9
, replacing

a pile cabs is 0.0375 × 1
3

, and replacing the floor is 0.1125. The
summation of the replacement cost of all the components is not one
because we do not plan maintenance on all the components of the
quay wall, such as the brickwork. The cost of a global inspect action
is 0.005. When an inspection action is taken, the observation will
be the current state. However, when no inspection occurs, we still
receive some information about the state. The city of Amsterdam is
currently using satellite images that measure the movement of the
quay wall. This data only reveals that the quay wall is in one of the
three worst states but does not reveal much about the specific state.
Therefore, if no inspection action is done, the observation matrix is:

Ono inspection =

1 0 0 0 0
1 0 0 0 0
0 0 0.34 0.33 0.33
0 0 0.34 0.33 0.33
0 0 0.34 0.33 0.33

 (31)

Due to insufficient maintenance over the last years, we assume the
components are in states 3 and 4 just before the failed state (state 5).
The starting state of the components is as follows:

s0 = {4, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3} (32)

The initial belief of the state for each component is given in equation
33. We chose this distribution because, at the start, we did not know
the state of the quay wall. Furthermore, we cannot determine well if
the component is either heavily degraded (state 4) or failed (state 5).

b0 = {0.25, 0.25, 0.25, 0.2, 0.05} (33)

Lastly, we set the constants for the utility function to P = 4, Cmax =
2, and Fmax = 0.2.

Hyperparameters The critic and actor network both used the
Tanh activation function. The critic network has four layers (55,
100, 100, 121); the output layer is 121 due to c = 11. The actor
network has one shared layer (55) and two layers for each compo-
nent head (100, 4) and global head (100, 2). The learning rate for
the critic is linear decayed from 1E-3 to 1E-4, and for the actor from
1E-4 to 1E-5. The VMIN is set to -8 for the cost and -0.3 for the fail-
ure probability, and the VMAX to 0 for both objectives. We update the
weights after every 32 steps and set the clip of the grad norm at 10.
We set the entropy coefficient to 0.1 and the value coefficient to 0.5.
The discount factor is γ = 0.975, which is common for maintenance
problems [2, 3]. We trained MODCMAC five times, each training
run comprising 25 million steps.

Belief-State Based Policy In the experiments, we compared
MODCMAC to a Belief-state-based (BSB) policy. This BSB pol-
icy calculates an action distribution for each component through the
current belief bt. The action distribution is as follows with the order
being {nothing, repair, replace}:

{bt,1 + bt,2 ∗ 0.25,bt,2 ∗ 0.75 + bt,3,bt,4 + bt,5} (34)

We do the same for the global action, for which the distribution is as
follows, with the order being {nothing, inspect}:

{bt,1 + bt,2,bt,3 + bt,4 + bt,5} (35)

The BSB policy then either takes the action with the highest prob-
ability in both distributions (equations 34 and 35) in the case of the
deterministic version, BSB-D, or samples the action from these dis-
tributions in case of stochastic version, BSB-S.

Results The training results of MODCMAC show that it is able to
learn a stable policy across the runs. We see that at the start, the utility
score is quite large, hovering around 150 (Figure 2c), and displays a
large standard deviation. We observe that the main contributor to this
high standard deviation is the failure probability. In Figure 2b, we see
that the standard deviation is significantly larger than the one found
in cost (figure 2a). The most probable reason for this is the stochastic
nature of our environment, in which the transition can differ signifi-
cantly between episodes; therefore, the number of failed components
can also differ in each episode.

In Table 1, we report the results of comparing MODCMAC to
both BSB policies. The results show that MODCMAC achieves the
best utility with 13.73±14.417, which is slightly better than BSB-S
(14.694±17.166) and better than BSB-D (23.664±15.881). We also
observed that the standard deviation for both the utility and failure
probability is large for both BSB policies and MODCMAC. This can
be primarily attributed to the stochastic nature of the environment
and its impact on the failure probability. The significant variation in
the failure probability consequently led to the large standard devia-
tion observed in the utility.

If we look only at the best 25% utility scores, we see that BSB-D
achieves the best utility (3.625) compared to MODCMAC (3.942).
This indicates that BSB-D is likely the best policy in optimal situ-
ations in which no or almost no components go to the failed state
but that it, on average, performs significantly worse. The reason for
this is that BSB-D only selects a repairing or replacing action when
it is sure that a component is in a bad state. This allows BSB-D
to have the lowest cost (0.528±0.088). BSB-S has a significantly
higher cost (1.029±0.103) but does have the lowest failure proba-
bility (0.064±0.116), especially compared to BSB-D (0.196±0.175).

(a) The average progression of the cost of
MODCMAC over five runs. The shaded area
is the standard deviation.

(b) The average progression of the failure
probability score of MODCMAC over five
runs. The shaded area is the standard devia-
tion.

(c) The average progression of the utility
score of MODCMAC over five runs. The
shaded area is the standard deviation.

Figure 2: Learning curves for MODCMAC on our quay wall model.

While MODCMAC has neither the lowest cost (0.746±0.103) nor
failure probability (0.071±0.112), it achieves the best trade-off ac-
cording to our utility function, which resulted in the lowest utility
score.

Table 1: The results of MODCMAC and the greedy method. We
tested the Belief-state-based (BSB) policies (BSB-D and BSB-S) and
each training run of MODCMAC for a 1000 episodes with different
seeds. A lower score is desired for both the objectives and the utility.
The best scores are highlighted in bold.

Fail.
Prob. Cost Util.

MODCMAC

Score 0.071±0.112 0.746±0.103 13.73±14.417
25% 0 0.671 3.942
50% 0 0.738 4.264
75% 0.12 0.812 20.857

BSB-D

Score 0.196±0.175 0.528±0.088 23.664±15.881
25% 0 0.46 3.627
50% 0.15 0.532 19.502
75% 0.322 0.588 38.617

BSB-S

Score 0.064±0.116 1.029±0.103 14.694±17.166
25% 0 0.957 4.626
50% 0 1.026 4.836
75% 0.12 1.094 23.727

5 Related Work

To our knowledge, MODCMAC is the first deep MORL infras-
tructural maintenance planning method. However, there are multi-
ple other single-objective RL approaches for infrastructural mainte-
nance planning besides DCMAC [2]. Other research shows how a
constrained POMDP can be applied in this setting, such that the risk
and the budget are constrained [3]. This resembles our approach, in
which we add penalties for going over certain values. However, the
approach of Andriotis et al. [3] is on one side more sophisticated in
that it will also work for step-wise budget constraints, meaning that
it can only spend an allocated amount of budget at any timestep. This
is currently not possible within MODCMAC. Nevertheless, Andrio-
tis et al. [3] still need to define their failure probability or risk as a
cost due to it being a single-objective RL method, whereas we can
directly optimize over the failure probabilities. A similar approach is
proposed in [11], where a DRL agent learns to group maintenance
actions that are closer in proximity, resulting in reduced repair and
replacement costs of neighboring assets. In our approach, this could

be rewritten as a multi-objective problem, in which one of the objec-
tives is to group maintenance actions. Other recent approaches uti-
lized Hierarchical Reinforcement Learning (HRL) for maintenance
planning [1, 8] to address the scalability issue with the action space.
Besides the HRL contribution, Hamida et al. [8] utilize a continu-
ous state space instead of a discrete state space for the deterioration
model. We see the usage of a continuous state space also in other
research [13, 15].

While MODCMAC might be the first deep MORL approach for
a multi-objective maintenance planning problem, it is not the first
multi-objective approach to it. A common method for maintenance
planning is to use standard optimization techniques such as genetic
algorithms [5, 6, 7]. However, our proposed method will likely per-
form better with known non-linear utility functions.

6 Conclusion and Future Works
In this paper, we introduced MODCMAC an MORL approach to op-
timally plan maintenance of multi-component structure. We showed
how our method is able to learn a non-linear utility function, in an
ESR setting, by attaining the most optimal utility score, when com-
pared to the Belief-state-based policies. In future research, we plan
to test our method with other and more complex maintenance en-
vironments. We want to do this by adding multiple assets, while
still planning the maintenance at the component level for each as-
set. Moreover, we want to increase the complexity of the environ-
ment by adding complex interactions among assets and increasing
the number of possible actions to include different lifespan extension
measures, and diverse interventions such as limiting heavy traffic, re-
ducing speed, etc. By adding these actions, we also want to include
more objectives. For example, with lifespan extension methods, we
could limit emissions and add this as an objective that needs to be
minimized while limiting traffic could be added as an availability
objective that needs to be maximized. However, MODCMAC’s critic
network output grows exponentially to a number of objectives. This
exponential increase of the critic output would increase training time
significantly. Therefore, we need to investigate other approaches to
accommodate a larger number of objectives [10].

Acknowledgements
This research is partially supported by funding from the Flemish
Government under the “Onderzoeksprogramma Artificiële Intelli-
gentie (AI) Vlaanderen” program, and the Dutch Research Council

(NWO) and the municipality of Amsterdam under the Urbiquay pro-
gram of the STABILITY and LiveQuay projects. Personal thanks to
L. Smalbil, who helped review the paper.

References
[1] Charalampos P. Andriotis. and Ziead Metwally., ‘Structural integrity

management via hierarchical resource allocation and continuous-
control reinforcement learning’, in 14th International Conference
on Applications of Statistics and Probability in Civil Engineering.
ICASP14, (2023).

[2] C.P. Andriotis and K.G. Papakonstantinou, ‘Managing engineering
systems with large state and action spaces through deep reinforce-
ment learning’, Reliability Engineering & System Safety, 191, 106483,
(2019).

[3] C.P. Andriotis and K.G. Papakonstantinou, ‘Deep reinforcement learn-
ing driven inspection and maintenance planning under incomplete in-
formation and constraints’, Reliability Engineering & System Safety,
212, 107551, (2021).

[4] Robert Borgovini, Stephen Pemberton, and Michael Rossi, ‘Failure
mode, effects and criticality analysis (fmeca)’, Reliability Analysis Cen-
ter, (1993).

[5] Zaharah Allah Bukhsh, Irina Stipanovic, and Andre G. Doree, ‘Multi-
year maintenance planning framework using multi-attribute utility the-
ory and genetic algorithms’, European Transport Research Review,
12(1), (jan 2020).

[6] You Dong, Dan M. Frangopol, and Duygu Saydam, ‘Pre-earthquake
multi-objective probabilistic retrofit optimization of bridge networks
based on sustainability’, Journal of Bridge Engineering, 19(6),
04014018, (2014).

[7] Jinchao Guan, Xu Yang, Lingyun You, Ling Ding, and Xiaoyun Cheng,
‘Multi-objective optimization for sustainable road network mainte-
nance under traffic equilibrium: Incorporating costs and environmental
impacts’, Journal of Cleaner Production, 334, 130103, (2022).

[8] Zachary Hamida and James-A. Goulet, ‘Hierarchical reinforcement
learning for transportation infrastructure maintenance planning’, Relia-
bility Engineering System Safety, 235, 109214, (2023).

[9] Conor F. Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Käll-
ström, Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten,
Luisa M. Zintgraf, Richard Dazeley, Fredrik Heintz, Enda Howley,
Athirai A. Irissappane, Patrick Mannion, Ann Nowé, Gabriel Ramos,
Marcello Restelli, Peter Vamplew, and Diederik M. Roijers, ‘A practi-
cal guide to multi-objective reinforcement learning and planning’, Au-
tonomous Agents and Multi-Agent Systems, 36(1), 26, (Apr 2022).

[10] Conor F. Hayes, Timothy Verstraeten, Diederik M. Roijers, Enda How-
ley, and Patrick Mannion. Multi-objective coordination graphs for the
expected scalarised returns with generative flow models, 2022.

[11] David Kerkkamp., Zaharah A. Bukhsh., Yingqian Zhang., and Nils
Jansen., ‘Grouping of maintenance actions with deep reinforcement
learning and graph convolutional networks’, in Proceedings of the 14th
International Conference on Agents and Artificial Intelligence - Volume
2: ICAART, pp. 574–585. INSTICC, SciTePress, (2022).

[12] M. Korff, M. Hemel, and D.J. Peters, ‘Collapse of the grimburgwal,
a historic quay in amsterdam, the netherlands’, Proceedings of the In-
stitution of Civil Engineers - Forensic Engineering (online), 175 (4),
96–105, (2022).

[13] Christos Lathourakis, Charalampos P. Andriotis, and Alice Cicirello,
‘Inference and maintenance planning of monitored structures through
markov chain monte carlo and deep reinforcement learning’, in 14th
International Conference on Applications of Statistics and Probability
in Civil Engineering. ICASP14, (2023).

[14] Mathieu Reymond, Conor F. Hayes, Denis Steckelmacher, Diederik M.
Roijers, and Ann Nowé, ‘Actor-critic multi-objective reinforcement
learning for non-linear utility functions’, Autonomous Agents and
Multi-Agent Systems, 37(2), 23, (2023).

[15] Erotokritos Skordilis and Ramin Moghaddass, ‘A deep reinforcement
learning approach for real-time sensor-driven decision making and pre-
dictive analytics’, Computers Industrial Engineering, 147, 106600,
(2020).

[16] Harold Soh and Yiannis Demiris, ‘Evolving policies for multi-reward
partially observable markov decision processes (mr-pomdps)’, in Pro-
ceedings of the 13th annual conference on Genetic and evolutionary
computation, pp. 713–720, (2011).

[17] Matthijs T. J. Spaan, Partially Observable Markov Decision Processes,
387–414, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[18] C Ch White and KIM KW, ‘Solution procedures for vector criterion
markov decision processes’, Large Scale Systems, 1, 129–140, (1980).

[19] Tiago Zonta, Cristiano André da Costa, Rodrigo da Rosa Righi, Miro-
mar José de Lima, Eduardo Silveira da Trindade, and Guann Pyng Li,
‘Predictive maintenance in the industry 4.0: A systematic literature re-
view’, Computers Industrial Engineering, 150, 106889, (2020).

