
Multi-objective bandit algorithms
with Chebyshev scalarization

Lawrence Mandow a;*, Sergio Martín-Albob and Jose-Luis Perez-de-la-Cruza

aUniversidad de Málaga, Andalucía Tech, Dpto. de Lenguajes y Ciencias de la Computación, Málaga, España
bITIS Software, Universidad de Málaga

Abstract. In this paper we analyze several alternatives for Cheby-
shev scalarization in multi-objective bandit problems. The alterna-
tives are evaluated on a reference bi-objective benchmark problem
of Pareto frontier approximation. Performance is analyzed according
to three measures: probability of selecting an optimal action, regret,
and unfairness. The paper presents a new algorithm that improves the
speed of convergence over previous proposals at least by one order
of magnitude.

1 Introduction
Bandit problems [10] arose from the problem of resource allocation
in clinical trials. They can be assimilated to the problem of optimally
playing a multi-armed bandit. This device is a slot machine with sev-
eral levers. Associated to each lever there is a (generally unknown)
probability distribution of rewards. The goal is to maximize the ex-
pected reward after a given number of lever pushings.

Bandit problems can be seen as a simplified case of reinforcement
learning [13] and their solution is related to well-known algorithms
such as MCTS (Monte Carlo Tree Search) and its variants (e.g. UCT
[4]).

Bandit problems can be generalized to multiobjective settings
[5][14][8]. In this case, the reward of pushing a lever is not a scalar
value, but a vector, and there are several (many) optimal values for
the expected reward. All these values define the Pareto frontier of the
problem. A possible strategy to approximate the Pareto frontier is to
solve different scalarizations of the original, vectorial problem.

Drugan and Nowé [5] analyzed linear and Chebyshev scalariza-
tions for multi-objective bandit problems. Linear scalarizations find
only a subset of Pareto-optimal solutions (the so-called supported
solutions), and this limitation is not suitable in certain situations.
On the contrary, Chebyshev scalarization can (in principle) find any
Pareto-optimal solution. However, experimental results shown in [5]
concerning Chebyshev scalarization have, in our opinion, room for
improvement.

∗ Financiado por Plan Propio de Investigación de la Universidad de Málaga -
Campus de Excelencia Internacional Andalucía Tech. L. Mandow supported
by project IRIS PID2021-122812OB-I00 (co-financed by FEDER funds).
This research is partially supported by the Spanish Ministry of Science and
Innovation, the European Regional Development Fund (FEDER), Junta de
Andalucía (JA), and Universidad de Málaga (UMA) through the research
projects with reference PID2021-122381OB-I00 and UMA20-FEDERJA-
065. S. Martín-Albo supported by Beca de Iniciación a la Investigación para
estudiantes de grado y máster, I Plan Propio de Investigación y Transferen-
cia de la Universidad de Málaga, España.). Corresponding Author. Email:
lmandow@uma.es

In this paper we review the application of Chebyshev scalariza-
tion to multiobjective bandit problems and propose new algorithms
in order to improve previous performance. A previous version of this
paper appears in [11].

The paper is organized as follows: in section 2 we present the main
concepts related to bandit problems, their multi-objective generaliza-
tion, and Chebyshev scalarization. In section 3 we present the algo-
rithm proposed in [5] and some new variants. Section 4 describes
an example and analyzes the performance of these variants. Finally,
some conclusions are drawn and some possible continuations are
suggested.

2 Antecedents
2.1 Bandit problems

Formally, let us consider a problem where there are k possible ac-
tions ai, i = 1 . . . k, each one associated to a probability distribution
with its own mean µi. Distributions are stationary and independent.
Every execution of ai returns a value (reward) taken independently
from its probability distribution. An agent (who doesn’t know the
distributions) must sequentially select N actions. A policy is a rule
that determines the agent’s next action.

Let µ∗ be the greatest mean, corresponding to the optimal ac-
tion. Executing a suboptimal action i has an associated regret ∆i =
µ∗−µi. The agent’s goal is to minimize the expected regret when ex-
ecuting N actions, or equivalently, to maximize the expected reward.

To this end, the agent must use actions both to estimate the ex-
pected value of each action, and to profit from the supposedly best ac-
tion (the so-called exploration/exploitation dilemma). A greedy pol-
icy selects at each step the action whose estimation is greatest (ex-
ploitation), but in that way the agent doesn’t improve the estimations
of the other actions (exploration), whose expected rewards could be
possibly better.

In fact, the greedy strategy is provably suboptimal. Lai and Rob-
bins [9] proved that optimal regret grows asymptotically as the loga-
rithm of the number N of actions. They also defined asymptotically
optimal policies by associating an upper confidence index to each
action and choosing the action with greatest index.

Agrawal [1] improved this result by defining asymptotically opti-
mal policies that are simpler to compute. Then, Auer, Cesa-Bianchi,
and Fischer [2] improved those previous results and defined policies
that obtain a logarithmic regret uniformly distributed along time. The
most used is the so-called UCB1 (Upper Confidence Bound 1) pol-
icy.

Algorithms 1 and 2 implement the UCB1 policy [2]. Algorithm 1
starts by executing each action once. Algorithm 2 computes in line
3 the average xi of the rewards obtained by executing each action
i. Next action is chosen in line 1 of algorithm 2. This action is the
one with the greatest upper bound. The bound is the sum of average
reward xi and a confidence factor that decreases with the number nk

of times that i has been executed and increases with the total number
t of executed actions. In this way, the xi term favors exploitation
while the confidence term favors exploration.

Algorithm 1 Algorithm UCB1. The method execute(a) performs
action a and returns the reward.
Input N , number of steps; K, number of actions; a⃗ = (a1, . . . , aK),
vector of actions.

1: Define x⃗ = (x1, . . . xK), n⃗ = (n1, . . . nK) vectors to keep av-
erage reward and step count for every action respectively.

2: for i ∈ {1..K} do
3: xi ← execute(ai)
4: ni ← 1
5: end for
6: t← K
7: for N steps do
8: stepUCB1(⃗a, x⃗, n⃗, t)
9: end for

Algorithm 2 Method stepUCB1. Method execute(a) performs ac-
tion a and returns the reward.
Input a⃗, x⃗, n⃗, vectors of actions, average rewards and step counts for
every action; t, global step count.

1: i← argmaxk(xk +
√

2 ln t
nk

)

2: ni ← ni + 1
3: xi ← xi +

1
ni
(execute(ai)− xi)

4: t← t+ 1

2.2 Multi-objective optimization

Multi-objective optimization [7] is a generalization of scalar opti-
mization in which a set of D different objectives are considered at
once. We will assume that we want to maximize all objectives.

A multi-objective problem has a set X of feasible solutions; the
reward vectors of each feasible solution form a set Y ⊂ RD . In the
following, by abuse of language we will identify the set of solutions
with the set Y of vectors.

The solution to a multi-objective problem is not given by a unique
element. Given two vectors u⃗, v⃗ ∈ RD , we say that u⃗ dominates v⃗
iff for each component i, ui ≥ vi and at least for one element j,
uj > vj . This dominance relation is a partial order. The solution to a
multi-objective problem is given by all its Pareto optima. A solution
is Pareto optimal iff its value is not dominated by the value of any
other solution. The set of Pareto optimal values defines the so-called
Pareto frontier. Given a set Y of vectors, we will denote by N (Y)
the subset of vectors in Y non dominated by any vector in Y .

Algorithms that try to find the set of Pareto optimal solutions to a
problem are frequently direct generalizations of scalar optimization
algorithms. The work of [5] described Pareto UCB1, a generalization
of the UCB1 algorithm that uses the dominance preference relation to
order reward vectors. Later, algorithm iPUCB [6] (improved Pareto
Upper Confidence Bound) provided a multi-objective generalization

of the improved UCB1 algorithm [3] which achieves better perfor-
mance discarding dominated actions.

Another approach to multi-objective optimization is the compu-
tation of just one Pareto-optimal solution (or a small subset of the
Pareto frontier). That unique solution is supposed to be the one that
fits better the preferences of the decision maker. Sometimes it is pos-
sible to scalarize reward vectors, i. e., to associate a scalar value to
each solution. Then we can apply single-objective optimization algo-
rithms to solve the problem.

Chebyshev scalarization1 belongs to a family of scalarization
methods that try to minimize the distance between the vector solu-
tion and a reference point. A usual reference point is the ideal point
α⃗ = (α1, . . . αD), where αi is the optimal value obtained in the
scalar maximization of the i-th objective,

αj = max
y⃗∈Y

yj (1)

In Chebyshev scalarization, the distance to minimize is the Cheby-
shev distance, or norm l∞, defined for a vector y⃗ = (y1, . . . , yD) as

max
k
{wk|yk − αk|} (2)

where the weight vector w⃗ = (w1, . . . wD) denotes the preference
of the decision maker.

A fundamental property of this approach is that for every non-
dominated solution y⃗∗ there exists a set of weights such that y⃗∗ min-
imizes the distance to α⃗ [12]. Analogously, given the solutions to

Min max
k
{wk|yk − αk|}

Subject to y⃗ ∈ Y (3)

at least one of them is non-dominated.
So, by trying different vectors of weights, Chebyshev scalarization

can be used to approximate a Pareto frontier.
In this paper we are mainly concerned with methods that choose

the next action combining upper confidence bounds and Chebyshev
scalarization. Nevertheless, in section 4, we shall test the perfor-
mance of these methods on a previously proposed benchmark prob-
lem that seeks to approximate a Pareto frontier [5] using a series of
such Chebyshev scalarizations. The algorithms and methods are de-
scribed in section 3.

2.3 Multi-objective bandits

Bandit problems can be generalized by assuming that every action
yields a reward vector, where each component represents a differ-
ent objective to maximize. This problem was proposed in [5] and
called MOMAB (Multi-Objective Multi-Armed Bandit problem). In
this paper, we will try to follow their notation.

The application of several scalarization strategies to MOMAB is
discussed in [5]. As we advanced in section 2.2, Chebyshev scalar-
ization offers some advantages. Firstly, it is computationally effi-
cient, since the dominance relation is easy to compute; and scalar
algorithms can be easily adapted. Secondly, it can compute a Pareto-
optimal solution suitable for the intuitive preferences expressed by
the decision maker. Moreover, it allows the computation of every
value in the Pareto frontier.

1 Sometimes spelled Tchebycheff.

2.4 Chebyshev scalarization for multi-objective
bandits

As we said in section 2.2, it is possible to find a vector that maximizes
the vector reward by minimizing the distance between the reward
vector to a reference point. In fact, in [5] algorithm UCB1 is proposed
to solve the problem. However, UCB1 is a maximizing algorithm and
in the problem at hand we want to minimize a function (the distance).
For this reason, a reformulation is needed. A new reference point is
defined: the so-called nadir point z⃗ = (z1, . . . , zD) where

zj = min
y⃗∈N (Y)

yj (4)

(notice that the minimum is taken only over the points inN (Y)).
Now we can maximize the distance to the nadir point, that is equiv-

alent to minimizing the distance to the ideal point. In fact, in [5] it is
proposed to substract a small positive value ϵj from each component
of the nadir point.

In conclusion, considering the new reference point z⃗, we define
the following weighted scalarization function:

fT (y⃗) = min
k
{wk(yk − zk)} (5)

And now, given the solutions to the following problem:

Max fT (y⃗)

Subject to y⃗ ∈ Y (6)

at least one of them is a non-dominated vector.
With this reformulation it is possible to adapt algorithm UCB1

to solve problem 6. A detailed description is given in the following
section.

3 Algorithms

An algorithm is proposed in [5] to approximate the Pareto frontier
of a MOMAB by solving a set of scalar problems arising from the
Chebyshev scalarization described above. The main ideas are the fol-
lowing:

• There is a set of S scalarization functions f1, . . . fS , each one
given by a different weight vector.

• The algorithm chooses randomly at each step one of these S func-
tions, with uniform probability.

• Different estimations and counts are mantained for different ac-
tions. That means that S optimizations are carried out indepen-
dently, one for each scalarization function.

• After scalarizating the estimations of an action, the confidence fac-
tor is added. This factor corresponds to the number of times in
which that function was chosen and that action was executed.

These ideas are applied in algorithms 3 and 4. The procedure so
defined will be called C0.

Algorithm 3 Algorithm C0. Method execute(a) performs action a
and returns the reward vector.
Input N , number of steps (decisions); K, number of actions; a⃗ =
(a1, . . . , aK), vector of actions; S, number of functions; C =
{f1, . . . fS}, set of functions (weights).

1: Define X , an array K×S such that Xij denotes the vector aver-
age of obtained rewards for action i when function j was chosen.

2: Define N , an array K × S such that Nij denotes the number
of times in which action i was executed when function j was
chosen.

3: Define t⃗ = (t1, . . . tS) such that tj denotes the number of times
function j was chosen.

4: for i ∈ {1..K} do
5: for j ∈ {1..S} do
6: Xij ← execute(ai)
7: Nij ← 1
8: end for
9: end for

10: for j ∈ {1..S} do
11: tj ← K
12: end for
13: for each step in N do
14: Choose uniformly at random a function f j

15: stepC0(j, a⃗,X,N, t⃗)
16: end for

Algorithm 4 Method stepC0.
Input j, index of scalarizing function; a⃗; vector of actions; X,N ,
arrays that store the average of reward vectors, and the step counts;
t⃗, global step count.

1: i← argmaxk(fj(Xkj) +
√

2 ln tj
Nkj

)

2: Nij ← Nij + 1
3: Xij ← Xij +

1
Nij

(execute(ai)−Xij)

4: tj ← tj + 1

This paper explores some improvements on algorithm C0:

1. Firstly, it is not necessary to perform S independent optimizations
UCB1 (one for each scalarization function). We can average all
rewards for action i, whichever function f j was chosen. In this
way, all scalarization functions benefit from all the values sampled
for action i.

2. Secondly, remember that UCB1 adds the confidence factor di-
rectly to the estimation of each action. On the contrary, C0 adds
the confidence factor to the scalarization of the estimations (algo-
rithm 4, line 1). Perhaps it would be interesting to scalarize the
bounds of the estimations instead of bounding the scalarization of
the estimations.

3. Lastly, ties can eventually arise when choosing an action. At least
one of them will correspond to a non-dominated point (see sec-
tion 2.2). Therefore, we propose to break the tie favoring non-
dominated estimations.

In conclusion, we consider in this paper three algorithms:

• C0: Shown above. It interleaves S independent UCB1 optimiza-
tions. Each function keeps an estimation of its own. The confi-
dence factor is added to the scalarization of the estimation.

• C1: All functions share estimations (proposal 1). Confidence fac-
tor is added to the scalarization of the estimation. See algorithms
5 and 6.

• C2: All functions share estimations (proposal 1). Confidence fac-
tor is added to the estimation and the result is scalarized (proposal
2). This algorithm is the same as C1 (algorithm 5), but in line 10
it calls stepC2 (algorithm 7) instead of stepC1 .

Proposal 3 is applied in all algorithms (C0, C1, and C2).

Algorithm 5 Algorithm C1. Method execute(a) performs action a
and returns the reward vector.
Input N , number of steps (decisions); K, number of actions; a⃗ =
(a1, . . . , aK), vector of actions; S, number of functions; C =
{f1, . . . fS}, set of functions (weights).

1: Define X , an array K ×D such that x⃗i denotes the vector aver-
age of rewards for action i (i-th row).

2: Define n⃗, a vector with K components such that ni denotes the
number of times action i was executed.

3: for i ∈ {1..K} do
4: x⃗i ← execute(ai)
5: ni ← 1
6: end for
7: t← K
8: for N steps do
9: Choose uniformly at random a function f j

10: stepC1(j, a⃗, n⃗,X, t)
11: end for

Algorithm 6 Method stepC1.
Input j, index of scalarizing function; a⃗, n⃗, vector of actions and
vector of counts for each action; X , array that stores the average of
reward vectors; t, global step count.

1: i← argmaxk(f
j(x⃗k) +

√
2 ln t
nk

)

2: ni ← ni + 1
3: x⃗i ← x⃗i +

1
ni
(execute(ai))− x⃗i)

4: t← t+ 1

Algorithm 7 Method stepC2.
Input j, index of scalarizing function; a⃗, n⃗, vector of actions and
vector of counts for each action; X , array that stores the average of
reward vectors; t, global step count.

1: i← argmaxk(f
j(x⃗k +

√
2 ln t
nk

))

2: ni ← ni + 1
3: x⃗i ← x⃗i +

1
ni
(execute(ai))− x⃗i)

4: t← t+ 1

4 Experiments and analysis
In this section we execute the algorithms presented in section 3 on
the problem proposed in [5], and compare their performances.

The problem has 20 actions and two objectives. Mean values
for each action are µ1 = (0.55, 0.5), µ2 = (0.53, 0.51), µ3 =
(0.52, 0.54), µ4 = (0.5, 0.57), µ5 = (0.51, 0.51), µ6 = (0.5, 0.5)
and µk = (0.48, 0.48), k = 7 . . . 20. The first four values are Pareto-
optimal. In all cases rewards follow a Bernoulli distribution.

Eleven scalarization functions are considered, defined by weight
vectors (1, 0), (0.9, 0.1), . . . (0.1, 0.9), (0, 1). The values ϵi sub-
stracted from the nadir point were all 0.01. Results shown correspond
to the average of 250 different agents. Each agent executed 106 steps.

4.1 Performance measures

In these experiments three measures proposed in [5] were evaluated:

• Number of times (in percentage) that a Pareto-optimal action was
chosen. This is a standard measure for Bandit problems.

• A measure of regret defined for scalarized algorithms. Assume
that the optimal value for scalarization function j is

f∗
j = max

k∈A
fj(µk) (7)

Then the regret for choosing action i when using function j is:

∆ij = f∗
j − fj(µi) (8)

• Lastly, we consider a mesure of unfairness that was proposed in
[5]. A shortcoming of the regret as performance measure is that
when a policy exploits just one Pareto optimal solution and ig-
nores the others, the regret can be small, but the approximation
of the Pareto frontier is very poor. For this reason, an unfairness
measure was proposed, that is the variance of the number of times
each optimal action was chosen:

σ =
1

|A∗|
∑
i∈A∗

(ti − T)2 (9)

where A∗ is the set of Pareto-optimal actions, ti is the number of
times action i was executed, and T is the average of these num-
bers.

4.2 Results

Figs. 1, 2 and 3 show the results of the experiments with algorithms
C0, C1, and C2 as a function of the number of steps. Measures were
taken every 500 steps. Fig. 1 displays the evolution of the probability
of choosing a Pareto-optimal action. Fig. 2 displays the average accu-
mulated regret. Fig. 3 shows the evolution of the unfairness measure.

4.3 Discussion

The worst results are obtained for algorithm C0. Since eleven func-
tions are independently optimized, convergence is slow. It can be
conjenctured that the more functions to consider, the slower the con-
vergence.

Results show that sharing value estimations by different functions
accelerates convergence. More concretely, Fig. 1 shows that C1 ob-
tains with 105 steps the percentage of optimal selections that C0 ob-
tains with 106 steps. In all cases, the oscillation of average values is
typical for the Bernoulli distributions followed by the rewards.

Moreover, Fig. 1 shows that C2 converges to optimal solutions
faster than C0 and C1. Fig. 2 confirms this point: the smallest values
of regret are achieved by C2, followed by C1 and lastly C0.

Concerning unfairness, Fig. 3 also shows that the performance
is different for different algorithms. In the initial steps of learning,
when actions are chosen practically at random, we can suppose that
unfairness will be small. However, as algorithms find out some Pareto
optima earlier than others, we can expect that unfairness will in-
crease. Only when all Pareto optima have been found, unfairness will

Figure 1. Probability of choosing a Pareto-optimal action

Figure 2. Average regret

Figure 3. Average unfairnesss (log-log scale)

decrease. These intuitions are confirmed in Fig. 3. Algorithm C2 be-
gins to decrease in unfairness after 105 steps, when it has achieved
a reasonable degree of convergence. Algorithm C1 presents at the
begining a smaller unfairness, since its convergence is slower; but
finally its unfairness is greater and after 106 steps it has converged.
Algorithm C0 shows a graph almost one order of magnitude below
C1 but also increasing. This behavior is consistent with the slower
convergence displayed in Fig. 1.

To sum up, results show that the new algorithm C2 presented in
this paper can represent a significant improvement over C0 and C1.
Concretely, for the reference problem defined in [5] the improvement
is of one order of magnitude.

5 Conclusions and future works

This paper addresses the multi-objective multi-armed bandit problem
(MOMAB). More concretely, we review methods based on Cheby-
shev scalarization. These methods can be used both to find one solu-
tion and to approximate the whole Pareto frontier. An intuitive vari-
ant of the algorithm in [5] (algorithm C0) is presented (algorithm
C1). A reformulation of the criterion for action selection is also pro-
posed (algorithm C2), based on the idea of bounding reward estima-
tions (as in the UCB1 algorithm). In this way the statistical meaning
of this bound and of its confidence factor are preserved. Considering
the speed of convergence to the Pareto frontier, the evaluation on a
reference problem shows that the performance of C2 improves those
of C0 and C1 at least in one order of magnitude.

Future work includes a more extensive evaluation of algorithm
C2. While the main focus of this paper was on methods to choose
the next action combining upper confidence bounds and Chebyshev
scalarization, these were tested on a Pareto-frontier approximation
problem. The encouraging results obtained make a comparison of C2
with Pareto algorithms like those described in [5] [6] an interesting
line of future research. Also more generally, the scalarization method
here described could be applied to other problems of multi-objective
reinforcement learning.

References
[1] R. Agrawal, ‘Sample mean based index policies with O(logn) regret for

the multi-armed bandit problem’, Advances in Applied Probability, 27,
1054–1078, (1995).

[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer, ‘Finite-time analy-
sis of the multiarmed bandit problem’, Mach. Learn., 47(2-3), 235–256,
(2002).

[3] Peter Auer and Ronald Ortner, ‘UCB revisited: Improved regret bounds
for the stochastic multi-armed bandit problem’, Period. Math. Hung.,
61(1-2), 55–65, (2010).

[4] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M.
Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener,
Diego Perez Liebana, Spyridon Samothrakis, and Simon Colton, ‘A sur-
vey of monte carlo tree search methods’, IEEE Trans. Comput. Intell.
AI Games, 4(1), 1–43, (2012).

[5] Madalina M. Drugan and Ann Nowé, ‘Designing multi-objective multi-
armed bandits algorithms: A study’, in The 2013 International Joint
Conference on Neural Networks, IJCNN 2013, Dallas, TX, USA, August
4-9, 2013, pp. 1–8. IEEE, (2013).

[6] Madalina M. Drugan, Ann Nowé, and Bernard Manderick, ‘Pareto up-
per confidence bounds algorithms: An empirical study’, in 2014 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement
Learning, ADPRL 2014, Orlando, FL, USA, December 9-12, 2014, pp.
1–8, (2014).

[7] Matthias Ehrgott, Multicriteria Optimization, Springer, 2005.
[8] Alihan Hüyük and Cem Tekin, ‘Multi-objective multi-armed ban-

dit with lexicographically ordered and satisficing objectives’, Mach.
Learn., 110(6), 1233–1266, (2021).

[9] T.L Lai and Herbert Robbins, ‘Asymptotically efficient adaptive alloca-
tion rules’, Advances in Applied Mathematics, 6(1), 4–22, (1985).

[10] Tor Lattimore and Csaba Szepesvari, Bandit algorithms, Cambridge
University Press, 2020.

[11] Lawrence Mandow, Sergio Martín-Albo, and Jose-Luis Perez-de-la-
Cruz, ‘Algoritmos para el problema del bandido multi-objetivo basa-
dos en la escalarización de Chebyshev’, in XIX Conferencia de la Aso-
ciación Española para la Inteligencia Artificial CAEPIA 20/21, 22-24
septiembre 2021, Málaga (España), pp. 135–140, (2021).

[12] Kaisa Miettinen, Nonlinear multiobjective optimization, Springer,
1998.

[13] Richard Sutton and Andrew Barto, Reinforcement learning: an intro-
duction, The MIT Press, 2nd edn., 2018.

[14] Yinglun Zhu and Robert Nowak, ‘On regret with multiple best
arms’, in Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, eds., Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, (2020).

