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Abstract. Recently introduced cone distribution functions from
statistics are turned into multi-criteria decision making (MCDM)
tools. It is demonstrated that this procedure can be considered as
an upgrade of the weighted sum scalarization insofar as it absorbs
a whole collection of weighted sum scalarizations at once instead
of fixing a particular one in advance. Moreover, situations are char-
acterized in which different types of rank reversal occur, and it is
explained why this might even be useful for analyzing the ranking
procedure. A few examples will be discussed and a potential appli-
cation in machine learning is outlined.

1 The ranking problem
The main MCDM dilemma is that best alternatives are looked for
among a collection which usually includes non-comparable pairs.
Such non-comparable alternatives are made comparable via a scalar-
ization: the weighted sum method is such a (linear) scalarization but
problems occur if the weights are not known (e.g., the ’unknown
weight scenario’ in [14, p. 72]) or this method is not desirable at all.
Here, a new ranking (a.k.a., scalarization) method is proposed which
takes into account a whole bunch of predefined linear scalarizations
at once and is monotone w.r.t. to a vector preoder generated by a con-
vex cone. This method can also detect certain elements of the Pareto
frontier which do not necessarily lie on the boundary of the convex
hull of the set of alternatives.

The symbols IN and IR are used for the sets of natural (including
0) and real numbers, respectively.

Let d ∈ IN\{0, 1} and C ⊆ IRd be a proper closed convex cone.
This means that C is a closed set satisfying sC = C for all s ≥ 0,
C + C = C, C 6∈ {∅, IRd}. It generates a vector preorder ≤C
(a reflexive and transitive relation which is compatible with addi-
tion and multiplication with non-negative numbers) via y ≤C z iff
z−y ∈ C. Special cases are the zero cone C = {0} and closed half-
spaces C = H+(w) := {z ∈ IRd | wT z ≥ 0} for w ∈ IRd\{0} as
well as, of course,C = IRd

+ which generates the component-wise or-
der. The symbol y <C z is used for z− y ∈ intC where intC 6= ∅
is assumed.

Let N ∈ IN\{0, 1} alternatives be given, i.e., a set X =
{x1, . . . , xN} ⊆ IRd. The ranking problem consists in finding a
function r : X → IR which ranks the alternatives in X . It is asked
that such a ranking be compatible with ≤C :

y ≤C z ⇒ r(y) ≤ r(z). (1)

A ranking function is called strict if y <C z implies r(y) < r(z).
Most difficulties in MCDM stem from the fact that the order relation
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≤C is not total, i.e., there are non-comparable pairs: y, z ∈ X with
y 6≤C z, z 6≤C y. Of course, this is the case for the component-
wise order generated by C = IRd

+: one alternative can be better w.r.t.
some criteria, but worse w.r.t. others.

A higher value of the ranking functions is "better" if the goal is
to maximize w.r.t. the underlying vector order ≤C ; a lower value
should be considered better if the goal is minimization. In this paper,
"better" is associated with a higher value of the rank function, but this
of course does not restrict generality. We also say that an alternative
x ∈ X dominates another y ∈ Y if y ≤C x.

An easy way to find such an r which is still widely used is the
weighted sum scalarization: take w ∈ C+ = {v ∈ IRd | ∀z ∈
C | v>z ≥ 0} (C+ is called the dual of the cone C) and define
r(z) = wT z. This makes the ranking a very subjective procedure:
changing the weight vector even slightly might result in a different
ranking. Moreover, different decision makers (e.g., reviewers of a
project) might have different weight vectors. Therefore, many other
methods have been suggested such as TOPSIS, ELECTRE, AHP etc.

A ranking function always comes with a loss of information: pairs
y, z ∈ X which are not comparable w.r.t. ≤C are made compara-
ble by assigning numbers r(y), r(z) which can be compared and the
knowledge of the ranking numbers is not sufficient to decide if, say,
y is really better than z or if they are not comparable w.r.t ≤C and
the better rank for y is just the result of the ranking procedure itself.
In our opinion, this issue is often neglected when discussing ranking
methods, but essential for the new ranking method proposed below.

It originates from multivariate statistics where cone distribution
functions were used to define quantiles of multidimensional random
variables [6]. It will be shown that these functions can be used to
define rankings (this idea is due to [9]) which enjoy very special
rank reversal features. These features turn out to be useful proper-
ties instead of a nuisance since the situations in which a rank reversal
occurs can be tracked and explained.

2 Cone ranking functions
The following definition introduces the basic concept of the paper.

Definition 1 The functions rX,w : IRd → IN for w ∈ C+\{0} and
rX,C : IRd → IN defined by

rX,w(z) = #{x ∈ X | x ∈ z −H+(w)} and (2)

rX,C(z) = min
w∈C+

#{x ∈ X | x ∈ z −H+(w)} (3)

are called w-ranking and cone ranking function, respectively, for the
set X .



Clearly, rX,C(z) = minw∈C+ rX,w(z). Moreover, rX,w =
rX,H+(w). This function is the N th multiple of the empirical lower
cone distribution functions from [6, 7] in which X is considered as a
set of multidimensional data points, or, more general, the values of a
random vector. Note that rX,w and rX,C are defined for all z ∈ IRd

which means that every point z ∈ IRd can be ranked w.r.t. the set X
of given alternatives.

Proposition 2 The functions rw and rC are strict ranking functions.
Moreover, one has

∀z ∈ IRd : rAX+b,AC(Az + b) = rX,C(z) (4)

for an invertible matrix A ∈ IRd×d and a vector b ∈ IRd where
AX+ b = {Ax1 + b, . . . , AxN + b}. Finally, ifD ⊆ IRd is another
closed convex cone with C ⊆ D, then rX,C(z) ≤ rX,D(z) for all
z ∈ IRd; in particular, rX,C(z) ≤ rX,H+(w)(z) for all w ∈ C+

and all z ∈ IRd.

PROOF. Assume y ≤C z. Then wT y ≤ w>z for all w ∈ C+.
Hence x ∈ y − H+(w) implies x ∈ z − H+(w). This implies
rX,w(y) ≤ rX,w(z) for all w ∈ C+ and consequently rX,C(y) ≤
rX,C(z). If y <C z, then y ∈ z − intH+(w) for all w ∈ C+\{0},
hence z 6∈ y −H+(w). On the other hand x ∈ y −H+(w) ⊆ z −
H+(w). Hence rX,w(y) + 1 ≤ rX,w(z) for all w ∈ C+\{0} which
gives the result. The straightforward proof of the affine equivariance
property (4) can be found in [6]. The last claim follows from the
definition of the ranking functions rX,C , rX,D together with a well-
known property of polar cones: if C ⊆ D, then D+ ⊆ C+.

Interpretation. The number rw(z) is precisely the number of al-
ternatives which have a lower or the same weighted sum with weight
distribution w than z; the minimum over these numbers over all pos-
sible weight vectors gives rX,C(z). This means that no matter which
feasible weight vector is chosen, z has a higher weighted sum than at
least rX,C(z) alternatives. If the task is to find an alternative which is
maximal w.r.t. ≤C , then one would look for x ∈ X with rX,C(x) as
large as possible–x dominates as many points as possible no matter
which weighted sum is chosen. This makes it clear that a ranking via
rw or rC is a relative one: there is no "objective" scale, the alterna-
tives are only mutually compared, not with respect to an outside scale
(such as temperature, for instance). Such a ranking is desirable for
example in cases of indices for countries, economies, projects, can-
didates etc. where choices can be made only among a pool of avail-
able alternatives and one wishes to select the relative best. Roughly
speaking, the function rX,C ranks an alternative higher if the mini-
mal number of alternatives it dominates w.r.t. a feasible weight dis-
tribution is higher.

Potential outcomes. Points which are not comparable w.r.t. ≤C
can have the same or (even very) different values of rX,C . As an
example, consider the setX of black and yellow dots in Figure 2 with
cone C = IR2

+: the upper right black dot in the 2nd quadrant has rank
2 while the black dot at the intersection of the dotted lines has rank
6. Of course, the two points are not comparable. Thus, a low ranking
can have two different reasons: first, the alternative in question is
rarely comparable to other alternatives, secondly it is dominated by
many other alternatives.

One might call an alternative an outlier if it is not comparable to
(and thus not dominated by) many others and has a very low rX,C -
value compared to the best ranked alternative–it has very different
(not necessarily worse) features than the rest. It could be useful to
identify such alternatives, e.g., for recommender systems since it

could make sense to mix in such an alternative sometimes as a rec-
ommendation to provide options outside the usual "bubble."

Pareto optimality. A point x̄ ∈ X is (Pareto) maximal in X w.r.t.
≤C iff x ∈ X and x̄ ≤C x imply x ≤C x̄ (there is no "strictly
greater" alternative). If C is pointed, i.e., C∩ (−C) = {0}, then≤C
is antisymmetric and x ∈ X , x̄ ≤C x implies x = x̄. The following
result provides a sufficient condition for maximality in terms of the
ranking function rX,C .

Theorem 3 Let C be a pointed polyhedral cone, i.e., it is pointed
and the intersection of a finite number of halfspaces. If rX,C(x̄) =
maxx∈X rX,C(x), then x̄ ∈ X is maximal. The converse is not true
in general.

PROOF. Assume there is a point y ∈ X , y 6= x̄ with x̄ ≤C y.
Without loss of generality one can assume that y is maximal in X;
otherwise it can be replaced by a maximal one since there are only
finitely many alternatives. Since x̄ has maximal ranking and x̄ ≤C y,
one has rX,C(x̄) = rX,C(y). Assume w̄ ∈ C+ provides the min-
imum in (3) for x̄ and v ∈ C+ for y: they exist since X is finite
and C is polyhedral. Assume first w̄>x̄ < w̄>y. Then one has
rX,w̄(x̄) = rX,C(x̄) = rX,C(y) = rX,v(y). Since y − x ∈ C
and v ∈ C+ one also has v>x̄ ≤ v>y.

In view of (2), denote X≤(w, x) := {z ∈ X | z ∈ x −
H+(w)} = {z ∈ X | w>z ≤ w>x} for w ∈ C+, x ∈ X . Then
#X≤(w̄, x̄) = #X≤(v, y) since rX,w̄(x̄) = rX,v(y). Further,
#X≤(v, x̄) ≤ #X≤(v, y) since v>x̄ ≤ v>y and #X≤(w̄, x̄) ≤
#X≤(v, x̄) because of the minimality property of w̄. Altogether,
#X≤(w̄, x̄) = #X≤(v, y) ≤ #X≤(v, x̄) ≤ #X≤(v, y), hence
equality holds for all of these numbers. Thus v provides the minimum
in (3) for rX,C(x̄) as well as for rX,C(y). Hence, w.l.o.g., one can
replace w̄ by v. Relabeling v by w̄ one gets rX,w̄(x̄) = rX,C(x̄) =
rX,C(y) = rX,w̄(y) and w̄>x̄ = w̄>y.

Assuming this, define the polytope Py(x̄) as the convex hull of
#X≤(w̄, x̄)\{y}. The set Py(x̄) − C includes x̄, but not y since
y is maximal and C is pointed. Separating one gets w ∈ C+

with maxx∈Py(x̄) w
>x < w>y. In particular, w>x̄ < w>y. De-

fine w(s) = w̄ + sw ∈ C+. Then one has y ∈ X≤(w̄, x̄) but
y 6∈ X≤(w(s), x̄) for s > 0. Since X is a finite set, there is s > 0
small enough such that X≤(w(s), x̄) ( X≤(w̄, x̄). This contradicts
rX,C(x̄) = rX,w̄(x̄) which concludes the proof.

Figure 1 below shows an example that points with a maximal value
of rX,C are not necessarily on the "convex part" of the Pareto fron-
tier, i.e., on the Pareto frontier of the convex hull of the points rep-
resenting the alternatives. First, consider only the three black points:
they all have rank 1 and are Pareto maximal w.r.t. the order gener-
ated by C = IR2

+. If one adds the three yellow points, then the three
black ones are still Pareto maximal and the one in the middle gets the
maximal ranking which now is 4. Clearly, this point does not belong
to the convex hull of the now 6 data points. By the way of conclu-
sion, this example shows that the ranking function rX,C can detect
maximal alternatives not belonging to the "convex part" of the Pareto
frontier–even though only linear scalarizations enter the definition in
(3). On the other hand, it also shows that the rank of a point partic-
ularly depends on how many other points it dominats w.r.t. the order
generated by the cone: if one placed the three yellow points in Figure
1 close to the upper left or the lower right black point, one could gen-
erate maximal ranking for either of them. This feature will be further
discussed in the sequel.



Figure 1. Non-convex Pareto
frontier

3 Rank reversal for cone ranking functions
Rank reversal of one or another type occur for virtually every MCDM
method, and its implications are still highly debated. One may com-
pare, for example, [1, 17] for surveys and [5] for TOPSIS, [11, 10]
for AHP, [16, 4] for ELECTRE and [12, 15, 3] for PROMETHEE.

Let z1, . . . , zM ∈ IRd be alternatives which are added to X and
denote Z = X ∪ {z1, . . . , zM}. A rank reversal occurs if

rX,C(x) < rX,C(y) and rZ,C(y) < rZ,C(x) (5)

for x, y ∈ X . A weak rank reversal occurs if (only) one of two in-
equalities in (5) is replaced by ≤. Clearly, a rank reversal is not pos-
sible if x ≤C y by definition of rX,C , rZ,C .

Result 1. If x and y are not comparable w.r.t. ≤C and rX,C(x) ≤
rX,C(y), then one can add M := rX,C(y) − rX,C(x) + K alter-
natives z1, . . . , zM and get rX,C(x) = rX,C(y) +K, i.e., a (weak)
rank reversal occurs. Indeed, if x and y are not comparable, one can
add M points which are also not comparable to y, but dominated by
x, i.e., zm ≤C x for m = 1, . . . ,M .

Figure 2 gives an example: the rank of the lower black point jumps
from 1 to 6 if the 5 yellow points are added while the rank of the
upper right black point remains 2.

Figure 2. Rank reversal 1

Understanding this rank reversal feature contributes to understand-
ing the proposed ranking method. First, a high ranking rX,C(y) com-
pared to rX,C(x) does not mean that alternative y is necessarily
much better than x. It only means that y dominates a higher num-
ber of alternatives if the "worst" weight distributions are chosen, i.e.,
the w’s which provides the minimum in (3) for x and y, respectively.
Still, x and y can be non-comparable w.r.t. the original order ≤C .
In such a case, this could indicate that x has very different features
compared to y and all alternatives dominated by y (the yellow points

in figure 2). One might say that in such a case y is a "common"
and x is a "rare" alternative and one would need to decide between
a safe (=common) and an adventureous (=rare) option which are not
comparable. To test the occurence of this feature, one can rank the al-
ternatives according to rX,C , then remove all alternatives which are
dominated by the best one(s) and repeat the ranking with the reduced
set. In the example of Figure 2, one would remove the yellow points
after ranking all yellow/black points and get the upper right black
point as the "rare" option. Note, however, that very different ranks
rX,C(x), rX,C(x) can also occur in cases where x, y ∈ X dominate
the same number of other alternatives.

Result 2. If one adds one alternative z := z1 to X , i.e., Z =
X ∪ {z}, then rZ,C(x) = rX,C(x) for x ∈ X or rZ,C(x) =
rX,C(x) + 1. In the second case, weak rank reversal may occur. This
is illustrated by the example of Figure 3. The set X comprises the
blue point x as well as the black ones, and one has rX,C(x) = 2
(note the doted line in the left picture). It depends on the location of
the added yellow point z if the rank of x changes: in the left picture it
does not change, in the right picture one has rZ,C(x) = 3. The ranks
of the black points do not change in either situation, they are 1, 2 and
2, respectively. Thus, the (new) rank rZ,C(x) does not only depend

Figure 3. Rank reversal 2

on x and Z, but also on the location of the other alternatives.

Result 3. If X = {x, y} has only points points, then 3 cases are
possible. Case 1: x and y are not comparable w.r.t. ≤C and hence
rX,C(x) = rX,C(y) = 1. Case 2: one has, without loss of generality,
x ≤C y, y 6≤C x and hence rX,C(x) = 1, rX,C(y) = 2. Case 3:
x ≤C y, y ≤C x and hence rX,C(x) = rX,C(y) = 2.

In the first case, a weak rank reversal may occur if alternatives are
added, but this is not possible in the second case: y will always be
higher ranked than x. In the third case, (only) a weak rank reversal is
possible. This shows that intransitivity effects cannot occur which is
due to (1) and the transitivity of≤C . The third case, however, cannot
occur if ≤C is antisymmetric, i.e., precisely if C ∩ (−C) = {0}.

4 An example

The cone ranking function can produce results which are quite
different from those generated by standard MCDM tools such as
TOPSIS. The ranking of a student cohort is discussed as an il-
lustrating example. The two criteria "average mark in exams" and
"credit points achieved in a given time interval" are used. In the pic-
tures, higher ranked individuals appear in lighter colours. Figure 4



shows the ranking obtained with TOPSIS: this method prefers–a lit-
tle counterintuitively–the credit point criterion over the other. Fig-
ure 5 shows the result according to the cone ranking function with
C = IR2

+: it gives higher rankings to alternatives in the upper right
area.

Figure 4. Student ranking with TOPSIS

Figure 5. Student ranking with rX,C

A similar example has been discussed in [7, Example 6.3] from a
statistical point of view.

5 Discussion of the cone
In the examples above, the "MCDM cone"C = IRd

+ was used. How-
ever, different cones are sometimes of advantage. The elements of the
dual cone C+ in Definition 1 can be seen as potential weight vectors
for the d different criteria. One may also observe that the condition
x ∈ z − H+(w) in (2), (3) means wT (x − z) ≤ 0, thus it is pos-
itively homogeneous in w. Therefore, one can restrict the set of w’s
to B+ = {w ∈ IRd

+ | w1 + . . .+wd = 1} if C = IRd
+. The set B+

includes all potential weight vectors for the d criteria. If the decision
maker wants to make sure that each criterion is given a minimal and
a maximal weight, say 0 ≤ wmini ≤ 1 and 0 ≤ wmaxi ≤ 1 for
i ∈ {1, . . . , d}, respectively, then one can consider the set

W = {w ∈ B+ | wmini ≤ wi ≤ wmaxi , i ∈ {1, . . . , d}}

amd replace C+ in (2), (3) by W .
For example, one may assign a minimal and a maximal weight to

the average mark (and/or to the number of credit points achieved) for

the student ranking, e.g., as the result of a discussion in an evaluating
panel. Let say, these numbers are wmin1 , wmax1 ∈ (0, 1). Then one
definesW = {w ∈ IR2

+ | w1 +w2 = 1, wmin1 ≤ w1 ≤ wmax1 } and
C+ = {sw | w ∈ W, s ≥ 0} and C = (C+)+ = {z ∈ IR2 | ∀w ∈
C+ : wT z ≥ 0}. The cone C+ now is smaller then IR2

+, the cone C
bigger than IR2

+ according to the relationships for dual cones. This
is also the underlying idea for panel/multi-judge MCDM in [9] and
motivates the use of a general cone C instead of just IRd

+.
Moreover, this procedures gives more flexibility to the decision

maker since the weight distribution does not have to be fixed in ad-
vance: the cone ranking function is a worst case ranking with re-
spect to a variety of weight distributions. It is also useful to consider
the minimizer(s) in (3): these are the weight vectors which gives the
worst w-ranking of an alternative. Thus, if the decision maker has a
preferred weight distribution (very) different from the minimizers in
rX,C(x) for x ∈ X , then corresponding w-ranking of x might even
be much better than its C-ranking.

In Figure 6, the ranking of the same student cohort is depicted
where the cone C is generated by the two vectors (0.7, 0.3),
(0.8, 0.2). This means that the minimal weight assigned to average
grade is 70%, the maximal weight is 80%. One may observe that this
creates higher ranking in the upper left as well as lower right part of
the point cloud due to the fact that one now has lower as well as
upper bounds for the weights which are strictly less than 100%. In
particular, the remote point on the upper left with a considerable low
average mark now has a better ranking.

Figure 6. Modified student ranking

The dual cone now is smaller which means that the original cone
C is bigger as can be seen in Figure 7 below: this creates compen-
sation opportunities, i.e., students can compensate for a low average
mark with a higher number of credit points within the same time in-
terval or vice versa. This shows that the ranking of such alternatives
(students, candidates, projects etc.) requires to answer the question
of how much surplus in one attribute can compensate a given deficit
in another attribute.

6 Clustering supervised classification models
A basic question often is: how to find the α% best alternatives in a
set of N alternatives? It is possible to use the level sets

LX,C(n) = {z ∈ IRd | rX,C(z) ≥ n},

n ∈ IN, for this purpose. These level sets correspond to the set-
valued cone quantiles introduced in [6]. One can ask which is the
greatest number n satisfying #{x ∈ X | x ∈ LX,C(n)} ≥ Nα

100

which even gives some information about the set X of alternatives



Figure 7. Modified cone

as a whole: the higher this number is (in relation to the number of
alternatives), the bigger is the group of "good" alternatives.

A related questions is to cluster the alternatives in the "really good
ones," "the really bad ones" and "the ugly ones" where the latter cat-
egory is meant to include those alternatives which considerably devi-
ate from the rest in a good way w.r.t. some of the criteria and in a bad
way w.r.t. other criteria. For this purpose, one can consider the sets
LX,C(N/2) (the good ones, i.e., with a ranking of at least N/2),
LX,−C(N/2) (the bad ones since the direction of the cone is re-
verted) and X\(LX,C(N/2)∪LX,−C(N/2)). The set LX,C(N/2)
corresponds to the multivariate median from [6]. It should be noted
that the sets LX,C(N/2), LX,−C(N/2) could even be empty (exam-
ples can be found in [7]).

Again, the shape of these sets also gives information on the set
of alternatives as a whole and can be utilized, for example, for ma-
chine learning procedures such as supervised classification models
as defined in [8]. Such models take the cone C as an input and adapt
the parameter n in order to find the set LX,C(n) that achieves the
lowest error rate based on the labeled data. This machine learning
concept can be used as a recommender system: the alternatives in
LX,C(n) will be recommended where the cone C stems from the
given preference relation of the customer/user. The goal is to find
the set LX,C(n), by adjusting n, that includes the alternatives that
will be accepted (with a high probability). Therefore, labeled data are
necessary. In this case, the alternatives which are represented by their
attributes, get a label that provides the information whether or not
they are acceptable. The further development into a semi-supervised
model is straightforward as the unlabeled data can be assigned to the
labeled one via the order relation ≤C . The goal is to determine the
set LX,C(n) and the value n, respectively, that minimizes the classi-
fication error rate.

If there are unlabeled alternatives dominating already positively
labeled ones w. r. t.≤C , then these are also labeled as acceptable. The
same principle is applied in the opposite direction for undesirable
data. If the amount of unlabeled data is smaller then the labeled one
and some of the former data is not comparable with the latter one,
then this unlabeled data can be omitted for the calculation of the set
LX,C(n) and reinserted as new data later on. The challenge is to
create an algorithm that determines the set LX,C(n) and the value
n, respectively, that minimizes the classification error rate. The false
positives as well as false negatives should be minimized. This could
be achieved by adjusting n via appropriate methods. The resulting
set LX,C(n) is then used to classify new data points. Of course, this
set can be updated after a specified threshold of new data.

7 Conclusion and perspective
A new ranking function is proposed which is derived from a statis-
tical function [6] which in turn resembles and generalizes the so-
called half-space or Tukey depth function. In statistics, a variety of
more recently introduced depth functions with different properties
exist. The ranking function proposed in Definition 1 is based on a
cone version of the half-space depth function. The same idea can
be applied to other statistical depth functions like the zonoid depth
[13] or expectile depth functions [2]. This may lead to a variety of
new ranking functions for MCDM. The computation of the values
of rX,C is a non-trivial task but can be done based on a merge of
sorting algorithms with convex geometry methods, compare [7] for
first impressions and remarks on complexity. The proposed ranking
methods give a ranking of a given set of alternatives relative to each
other. Therefore, rank reversal features appear naturally, but can be
characterized and used in order to analyse the decision making pro-
cedure itself.
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