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Abstract. A multi-objective multi-agent system (MOMAS) is a
flexible group decision making formalism, allowing one to model
decision making processes where multiple actors must consider the
trade-offs between conflicting objectives. Previous works have ad-
vocated for a utility-based approach to MOMAS, where each ac-
tor makes decisions in accordance with its own utility function - a
function which specifies preferences over objectives. By contrast,
many other works in the multi-objective decision making literature
adopt the axiomatic or Pareto-based approach, where a set of non-
dominated tradeoff solutions called the Pareto optimal set is derived.
How exactly utility-based and Pareto-based solution sets relate to
each other in MOMAS settings is currently not well understood. In
this paper, we use the framework of multi-objective normal form
games (MONFGs) to explore the relationship between the solution
sets generated by the two approaches. We attempt for the first time in
the context of MOMAS to quantify the degree of alignment between
individual agent utility functions. We also demonstrate for the first
time that situations can exist where none of the Nash equilibria in a
MOMAS for a given set of utility functions are Pareto optimal.

1 Introduction
Many decision making processes in the real world involve multiple
agents making decisions in a distributed manner. Multi-agent sys-
tems (MASs) have been used to model a wide variety of domains,
including urban and air traffic control [8, 20], autonomous vehicles
[7], and energy systems [6], to give a few examples.

A key aspect of many real world applications, including all of the
above domains, is that they feature multiple objectives that must be
optimised simultaneously. The field of multi-objective decision mak-
ing (MODeM) covers a broad range of approaches that explicitly
consider the possible trade-offs between objectives when computing
solutions to a problem. Examples include game theoretic approaches
[5, 14], as well as algorithms based on reinforcement learning (RL)
[11, 17] or planning [3, 4].

The intersection of these two fields, MAS and MODeM, is known
as multi-objective multi-agent decision making (MOMADM). Re-
search into MOMADM is still at an early stage, and many open ques-
tions remain in the field, as highlighted in a recent survey [15]. Re-
search interest in the field has increased over the years, and more
researchers are now exploring the possibilities offered by multi-
objective multi-agent systems (MOMAS).
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Approaches to computing solutions for MODeM problems gen-
erally fall into one of two categories, the utility-based approach or
the axiomatic or Pareto-based approach [4]. In the utility-based ap-
proach, it is assumed that a decision maker has a utility function that
can be used to compute a scalar utility value that represents the de-
cision maker’s preference for a given multi-objective vector, thus al-
lowing a total ordering over all possible multi-objective vectors to
be computed. By contrast, the axiomatic or Pareto-based approach
seeks to compute the Pareto optimal set (or a close approximation of
it), and the Pareto optimal set is then presented to the decision maker
to allow an appropriate solution to be selected.

In single agent settings where there is only one decision maker, the
relationship between the utility-based and Pareto-based approaches
is straightforward; if one can compute the true Pareto optimal set
for the problem, then it is guaranteed that there will be a solution in
this set that maximises the utility of the user for any possible utility
function1.

The relationship between the utility-based and Pareto based ap-
proaches becomes much more complex when multiple agents are in-
volved. In MAS, often the desired outcome is to have a stable solu-
tion, e.g., a Nash equilibrium [9]. However, it is known from previous
research that Nash equilibria do not always exist in MOMAS [16].
When following the utility-based approach, whether a stable solution
exists in a MOMAS depends on the particular utility functions being
used by each agent in the system. A further complication is that one
could take either a system-wide or individual agent perspective when
computing Pareto optimal sets in MOMAS.

Little is currently known about the relationship between solution
sets derived using the utility-based and Pareto-based approaches in
MOMAS, so in this work we present the first investigation into their
relationship. We use the framework of multi-objective normal form
games (MONFGs) for our analysis and experiments, and introduce
a new MONFG specifically to aid our analysis. We also study for
the first time in a MOMAS context a non-linear utility function that
that can be parameterised with a set of weights or preferences over
objectives, as well as attempting for the first time to quantify the
degree of alignment between individual agent utility functions in a
MOMAS.

Our analysis demonstrates that the specific preferences expressed
by individual agents’ utility functions have a considerable influence
on the range of possible joint strategies that can be Nash equilibria in
the system. We also find that for certain combinations of preferences,

1 Under the very minimal assumption that the utility function is monotoni-
cally increasing, see Section 2.1.2.



many Nash equilibria that are not Pareto optimal can appear, which
may decrease the probability that learning algorithms converge to
Pareto optimal outcomes. Our work demonstrates for the first time
that situations can exist where none of the Nash equilibria are con-
tained in the system-wide Pareto optimal set of solutions, implying
that the utility-based and Pareto-based approaches can give vastly
different sets of solutions for the same problem.

Our results provide the first empirical evidence in support of the
arguments in prior works (e.g., [13, 15, 16]), that a utility-based ap-
proach should be adopted in preference to a Pareto-based approach
when computing solutions in MOMAS, as using the Pareto-based
approach alone may make it impossible to find a Nash equilibrium,
which is one of the main solution concepts that designers of MAS
typically aim to achieve.

2 Background

Here we cover the necessary background to understand the results
later in the paper. For a more comprehensive view, we recommend
recent surveys on MOMADM [15] and on multi-objective RL [2].

2.1 Multi-Objective Normal Form Games

Definition 2.1 (Multi-objective normal-form game) An n-person
finite multi-objective normal-form game G is a tuple (N,A,p), with
n ≥ 2 and d ≥ 2 objectives, where:

• N = {1, . . . , n} is a finite set of agents.
• A = A1 × · · · × An, where Ai is the finite action set of agent i

(i.e., the pure strategies of i). An action (pure strategy) profile is a
vector a = (a1, . . . , an) ∈ A.

• p = (p1, . . . ,pn), where pi : A → Rd is the vectorial payoff of
agent i, given an action profile.

We can define the set of mixed strategies of player i as the probabil-
ity distribution over their set of actions: Πi = P (Ai). A mixed-
strategy profile is then the Cartesian product of all the individual
mixed-strategy sets Π = Π1 × . . . × Πn. The expected payoff of
player i, under a mixed-strategy profile π ∈ Π is defined as:

pπ
i = E

a∼π
pi(a) =

∑
a∈A

pi(a)

n∏
j=1

πj(aj) (1)

When following the utility-based approach [2], each player has a pri-
vate (potentially unknown) utility function ui that represents their
preferences over the objective values. Utility functions will be dis-
cussed in more detail in Section 2.1.2.

In this paper, for ease of analysis, we only consider MONFGs with
two players, two actions and two objectives. We also confine our
study to settings where both agents receive the same payoff vector
after the game has been played, i.e., p1 = p2. Both agents however
have their own individual utility function that represents their pref-
erences over the objectives. When agents receive the same payoffs
but have their own utility function this is known as the team reward
individual utility (TRIU) setting2 [15].

2 The assumption that agents are in the TRIU setting is commonplace in prior
work on MONFGs (e.g., [14, 16, 17]). This assumption is convenient for
our study as we can focus on the effects of the agents’ utility functions only,
rather than considering the combined effects of different utility functions
and different payoff vectors for each agent.

2.1.1 Optimisation Criteria

To calculate the utility of a payoff vector, there are two choices [2].
One option is to compute the expected value of the payoffs of a
joint strategy first and then apply the utility function, leading to the
scalarised expected returns (SER) optimisation criterion:

pui = u(E[pπ
i ]) (2)

where π is the joint strategy for all the agents in a MONFG.
The second option is to apply the utility function before comput-

ing the expectation, leading to the expected scalarised returns (ESR)
optimisation criterion:

pui = E[u(pπ
i )]. (3)

Which of these optimisation criteria is most appropriate depends
on how the agents will interact. SER is the correct criterion if the de-
cision making process will be repeated multiple times and the utility
will be calculated based on the expected return vector, whereas ESR
is more appropriate if only a single decision will be executed [16].
As we are interested in studying repeated interactions, we opt for the
SER criterion in this work.

2.1.2 Utility Functions

As is common in the MODeM literature [2, 15], we make the min-
imal assumption that the utility functions being used by the agents
are monotonically increasing. Formally, a utility function is mono-
tonically increasing if:

(∀o : pi,o ≥ p′i,o)⇒ u(pi) ≥ u(p′
i) (4)

where pi,o is the payoff value for agent i on objective o. In other
words, if for all objectives, the payoff of a strategy is greater than
or equal to the payoff of another strategy, this relationship should
be preserved by the utility function as well. This assumption trans-
lates to each agent always wanting to achieve a higher value in each
objective.

A linear combination, as shown in Eqn. 5 below, is a widely used
canonical example of a utility function:

ui_linear(wi,pi) =

d∑
o=1

wi,o · pi,o (5)

where wi is a weight vector3 that has one entry wi,o for each objec-
tive, representing the preferences that agent i has for the objectives.

Linear functions, although widely used due to their simplicity, are
not as interesting or useful to study as the much broader class of
non-linear functions. One reason for this is the well-known fact that
linear functions cannot recover solutions in concave regions of the
Pareto optimal set [19]. Preferences for real world decision makers
are also highly likely to be non-linear, e.g., situations where a mini-
mum value must be achieved on an objective require non-linear util-
ity functions [10].

Note that non-linear utility functions may lead to different optimal
strategies under SER and ESR, since a non-linear operation need not
return the same result when applied to the vector payoff before or
after the expectation (Equations 2 and 3). For linear utility functions,
the SER and ESR optimisation criteria are equivalent [16]. If lin-
ear utility functions are used in a MONFG, the utility functions can

3 A vector whose coordinates are all non-negative and sum up to 1.
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be applied directly to the payoff matrix to create a so-called trade-
off game, and standard single-objective solution methods from game
theory can be applied.

Examples of non-linear utility functions used previously in the
study of MONFGs include simple product and sum of squares func-
tions [16]. Non-linear utility functions with preference parameters
have not previously been studied in the context of MONFGs. In or-
der to address this gap and enable us to study the effect of conflicting
non-linear preferences, we consider a form of utility function (Eqn.
6) that is well known in the field of multi-attribute utility theory, the
Cobb-Douglas (CD) function [1]:

ui_cd(wi,pi) =

d∏
o=1

p
wi,o

i,o (6)

where w is a weight vector representing an agent’s preferences over
objectives as before. In Section 3 we present a comprehensive anal-
ysis of the differences between the dynamics introduced by parame-
terised linear and CD utility functions in an example MONFG.

2.1.3 Solution concepts for MONFGs

Since we are contrasting two approaches for MOMAS in this work,
we also look at two corresponding solution concepts, namely Nash
equilibria for the utility-based approach with known utility functions,
and Pareto front for the axiomatic approach.

Definition 2.2 (Nash equilibrium in a MONFG under SER) A
mixed-strategy profile πNE is a Nash equilibrium in a MONFG
under SER if for all i ∈ {1, ..., N} and all πi ∈ Πi, with Πi the set
of mixed strategies for agent i:

ui

[
Epi(π

NE
i ,πNE

−i )
]
≥ ui

[
Epi(πi,π

NE
−i )

]
(7)

i.e. πNE is a Nash equilibrium under SER if no agent can increase
the utility of her expected payoffs by deviating unilaterally from
πNE .

Previous work has shown that NE need not exist in MONFGs under
SER [14], this result being emphasised by the equivalence that can
be built between MONFGs and continuous games [12].

On the other hand, the Pareto front (PF) leverages the Pareto dom-
inance relation to establish a partial ordering over strategies: a strat-
egy profile π Pareto dominates another strategy profile π′ if for all
objectives o : po(π) ≥ po(π

′) ∧ ∃o′ : po′(π) > po′(π
′).

Definition 2.3 (Pareto front) The Pareto front is the set containing
all Pareto non-dominated strategies, for any possible monotonically
increasing (Eqn 4) utility function.

As noted in [2], multiple strategies can have the same expected pay-
off, so the set retaining the strategies whose value functions corre-
spond to the PF is called a Pareto Coverage Set (PCS). Furthermore,
since we are in a MAS, we will consider the PCS over the mixed-
strategy profile Π of all the agents.

2.1.4 Multi-Objective Actor-Critic

As a learning approach for this work we adopt the independent Multi-
Objective Actor Critic (MO-AC) proposed by [21], under the SER
optimisation criterion (Eqn. 2). We define the SER objective of an
agent as:

J(θ) = u

(∑
a∈A

π(a|θ)Q(a)

)
(8)

where u is the non-linear utility function, a ∈ A is an action avail-
able to the agent, π the policy of the agent parameterised by θ and
Q(a) ∈ Rd is the multi-objective action value vector that can be
learned using a simple stateless Q-learning update rule [14]:

Q(at)← Q(at) + αQ[pt −Q(at)] (9)

where αQ is the learning rate for Q-learning. After the action values
have been updated, the objective J can be calculated and analytically
derived and we update θ in the direction of maximising the SER:

θt+1 ← θt + αθ∇J(θt) (10)

where αθ is the learning rate for policy update.

3 Analysis
To aid our study of the relationship between utility-based and Pareto-
based solution sets, we introduce a new MONFG in this work, which
we will refer to as Game204. This game was intentionally designed to
be very simple, in order to make this first analysis of the relationship
between utility-based and Pareto-based solution sets more straight-
forward. A key feature of Game20 is that only two of the joint actions
in pure strategies are Pareto optimal. The reward vectors for the joint
actions (R,L) and (L,R) are Pareto dominated by the reward vectors
for the joint actions (L,L) and (R,R) respectively.

L R

L [3, 1] [1, 2]

R [2, 1] [1, 3]

Table 1: Game20 - a 2-action MONFG. For any joint strategy, both
players receive the same payoff vector, i.e., p1 = p2. Note that the
reward vectors for the joint actions (R,L) and (L,R) are Pareto dom-
inated by the reward vectors for the joint actions (L,L) and (R,R)
respectively.

For our study, we consider two types of utility functions: the well-
known linear form (Eqn. 5) and the non-linear Cobb-Douglas func-
tion (Eqn. 6). To gain an initial understanding of the combinations
of preferences where the agents’ interests will likely be aligned/non-
aligned when both agents use either of these functions, we conducted
a correlation analysis, the results of which are shown as heatmaps
in Figs. 1 and 2. As far as we are aware, this is the first time that
such a correlation analysis has been performed on utility functions
with preference/weight parameters in the context of multi-objective
multi-agent decision making.

We compute the correlation between utility functions for all com-
binations of weights on objective 1 (wrow,1, wcol,1) for each player,
in the range 0.0 (lowest possible preference for objective 1) to 1.0
(highest possible preference for objective 1), where the weight space
is discretised at a resolution of 0.1. Therefore, we consider 11 differ-
ent weights for each player, so the number of distinct pairs of weights
is 11 × 11 = 121 in total. For each distinct combination of player
weights, we calculate the utility for each player over all possible pay-
off vectors in the range [1.0, 1.0] to [3.0, 3.0], stepping through the
objective space at a resolution of 0.01. This resolution yields 40,401
unique multi-objective value vectors, and for each combination of
player weights and value vector a utility value is computed using

4 We pick the number 20 to fit in with the numbering system used for the
Ramo library [18] for MONFGs, which at the time of writing already de-
fines games numbered up to 19.
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Utility correlation (R²): u_row=u_linear, u_col=u_linear

Figure 1: Utility correlation (R2) heatmap for combinations of weights
for objective 1, when both players use a linear function (Eqn. 5).
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Figure 2: Utility correlation (R2) heatmap for combinations of weights
for objective 1, when both players use a CD function (Eqn. 6).

Figure 3: Expected values of Nash equilibria with linear functions. Figure 4: Expected values of Nash equilibria with CD functions.

both the linear and CD functions. Finally, a corresponding correlation
value for the utilities over the objective space for each pair of player
weights is computed using the built-in R2 function in scikit-learn,
and the correlation value is plotted on the heatmap corresponding to
either the linear or CD functions as appropriate.

From Figs. 1 and 2 we observe some general trends. Along the
main diagonal of both plots, we can see that when the preferences
for objective 1 are matched (e.g., wrow,1 = 0.5, wcol,1 = 0.5),
there is a perfect correlation of 1.0 between the players’ utilities. By
contrast, when the player’s preferences are as different as possible
(e.g., wrow,1 = 0.0, wcol,1 = 1.0), we observe a perfect negative
correlation of -1.0 between the players’ utilities.

We will use Figs. 3 and 4 to demonstrate the differences between
utility-based and Pareto-based solution sets for both linear and CD
utility functions. For both plots, we stepped through the space of all
possible joint strategies at a resolution of 0.01, and through the space
of possible weights on objective 1 at a resolution of 0.01. This gives
a total of 101 possible individual strategies and 101 individual pref-
erence vectors for each player, or 101×101 = 10, 201 possible joint
strategies and 10, 201 possible preference vectors. In both plots, the
full set of expected return vectors is plotted in light grey, where each
expected return vector corresponds to one of the 10,201 joint strate-

gies considered. The Pareto coverage set is shown in black on both
plots. The p_prune() function from the RAMO library [18] was
used to generate the PCS, by pruning out all dominated expected re-
turn vectors. For both plots the set of all expected return vectors and
the Pareto coverage set are identical, as neither of these sets are re-
lated to the utility functions used.

When comparing Figs. 3 and 4, it is immediately apparent that
there is a much higher density of Nash equilibria (blue points) when
linear functions are used by both players, whereas the density of
Nash equilibria is much lower in the case of CD utilities. NE in the
linear case are very evenly distributed through the space of all ex-
pected return vectors, whereas NE in the CD case are focused more
towards the extremities of the space of expected return vectors. We
also observe that the sets of PCS strategies that can be Nash equilib-
ria are very different for both utility functions, and that the two ex-
treme points on the PCS can be Nash equilibria under certain weight
combinations for both utility functions.

The most important difference between Figs. 3 and 4 is the set of
Nash equilibria that do not have a Pareto optimal alternative (red in-
verted triangles)5. In the linear case, for any of the considered com-

5 The discretisation approach that we take here has limitations, in that we
consider only a subset of all possible joint strategies. We can use this ap-
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Figure 5: Heatmap of the ratio of computed Nash equilibria that are
Pareto optimal when both players use a linear utility function.

Figure 6: Heatmap of the ratio of computed Nash equilibria that are
Pareto optimal when both players use a CD utility function.

binations of weight vectors, there is always at least one NE that is
Pareto optimal. By contrast, in the CD case there are combinations
of weights where the only NE that are present are not Pareto optimal.
In other words, for certain combinations of preferences, searching for
joint strategies using a Pareto-based approach alone is insufficient, as
it is possible for certain weight combinations that none of the joint
strategies that are Pareto optimal will be Nash equilibria, implying
that no stable solution could be found using Pareto-based sets alone.
We have demonstrated this effect only for one simple MONFG and
one form of parameterised non-linear utility functions, however we
expect that this effect will also be present in more complex MONFGs
as well as for different non-linear utility functions.

Figs. 5 and 6 show heatmaps with the ratios of the number of Nash
equilibria that are Pareto optimal to the total number of Nash equi-
libria for various weight combinations, with the wrow,1 on the x-axis
and wcol,1 on the y-axis. The heatmaps use a resolution of 0.01 for
both the joint strategy space and the weight space (10, 201 unique
pairs of weights)6, and display persymmetric matrices (i.e., symmet-
ric with respect to the second diagonal). The key difference between
these plots is that for the CD utility function there are more regions
of the joint weight space characterised by a very low probability of
any of the found Nash equilibria being Pareto optimal. In compari-
son to the linear case, for the CD utility function the ratio can even
reach a value of 0, corresponding to the situations identified in Fig. 4
of weight instances with NE without Pareto optimal alternatives. For
the linear utility function, the higher density of NE observed in Fig. 3
is reflected in the region where the row player’s weight on objective
1 ranges between 0.34 − 0.66, where 2 out of the 3 NE are Pareto
optimal, resulting in a ratio of 0.67. Appendix B presents heatmaps
of the number of computed Pareto optimal NE.

One final issue to consider is whether there is any relationship be-
tween the correlation of player utilities for a given set of joint pref-
erences and the likelihood that the Nash equilibria for that set of

proach to make observations about the likelihood of finding Pareto optimal
Nash equilibria. We tried smaller resolutions in the strategy space (e.g.,
0.001) which still yielded instances of Nash equilibria with no Pareto opti-
mal alternative. In future work we aim to prove mathematically that there
are cases where no Pareto optimal Nash equilibria exist.

6 We note that for the regions pertaining to the row player’s weight on objec-
tive 1 ∈ {0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55, 0.57, 0.59} we
used a strategy resolution of 0.005, as the previous resolution was insuf-
ficient to identify the equilibria in those regions.

joint preferences are Pareto optimal. In some extreme regions where
there is a low or negative correlation between the player’s utilities,
we see clearly from Figs. 5 and 6 that there is a very low proba-
bility that any of the discovered Nash equilibria are Pareto optimal.
For example when wrow,1 ∈ [0.0, 0.4] and wcol,1 = 1.0, or when
wrow,1 ∈ [0.6, 1.0] and wcol,1 = 0.0. However, in some instances
where the player’s utilities are more highly correlated we also ob-
serve areas with a low probability of Pareto optimal NE, depending
on the specific preference values. It is likely the the probability of
Pareto optimal NE depend on other factors besides utility correlation,
such as the structure of the payoff matrix and whether the equilibria
are in pure or mixed strategies - the interplay of these factors merit
further study in future.

4 Experiments

We extend our analysis of Game20 with an empirical evaluation of
the learning process, using the MO-AC introduced in Section 2.1.4,
available as part of the Ramo library [18]. Each player independently
uses MO-AC to learn a softmax policy that maximises their individ-
ual SER objective. The players interact for 20,000 episodes and use
αQ = 0.01 and αθ = 0.05 as the learning rate values. All the experi-
ments are averaged over 100 trials and are conducted using either the
linear (Eqn. 5) or Cobb-Douglas (Eqn. 6) utility functions for both
players. We have selected weigh combinations to cover a wide range
of scenarios for Game20, according to the different regions identified
in Figs. 5 and 6. Tables 2 and 3 from the appendix present the full
overview of the experiments, from which we select a few instances
and present in more detail below. In each table, w1 represents Player
1’s weight for the first objective, i.e., (w1,1, w1,2) = (w1, 1 − w1),
while w2 represents Player 2’s weight for the first objective, i.e.,
(w2,1, w2,2) = (w2, 1− w2).

To complement the analysis from Section 3, we also focus on eval-
uating the proximity of the learned strategies to the NE of the re-
spective game (i.e., under the considered utility function and weigh
values). To this end we employ a straightforward distance metric be-
tween the learned strategies, π, and the strategies under each NE,
πNE , namely, the maximum value of the element-wise difference
between π and each πNE . We use 0.02 as a threshold to establish
the convergence to a NE, or, in other words, we allow for at most
a 0.02 deviation from the NE strategy for each action probability of
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Figure 7: Heatmap over the joint strategy space, averaging the out-
comes of the last 5% interactions over 100 runs, with a linear utility
function, w1 = 0.0, w2 = 0.5.
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Figure 8: Heatmap over the joint strategy space, averaging the out-
comes of the last 5% interactions over 100 runs, CD utility function,
w1 = 0.0, w2 = 0.5
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Figure 9: Kernel density estimate plot of the distribution of the dis-
tances between learned strategies and NE, with a CD utility function,
w1 = 0.0, w2 = 0.5.

each player7. A first observation is that when the players’ preferences
are fully aligned (i.e., w1 = w2 ∈ {0.0, 0.5, 1.0}), the set of possi-
ble NE are fully part of the PCS8 and independent MO-AC converges
with high probability to one of the NE strategies.

For the case in which w1 = 0.0 and w2 = 0.5, we notice an
important discrepancy between the linear and CD utility functions.
Firstly, under the CD utility only one NE is present, with strategy
[0, 1] (i.e., fully action R) for Player 1 and strategy [0.25, 0.75] for
Player 2. Agents using independent MO-AC are able to converge to
this NE and we can visualise this outcome in a heatmap over the joint
strategy space, in Fig. 8, averaged for the last 5% of interactions over
the 100 runs. To further visualise the results we present a kernel den-

7 We note that while we focus here on the learned strategies and thus on a
simple distance metric defined over the strategy space, further analysis is
warranted on the landscape in strategy space around the NEs. An alternative
is investigating if concepts such as the incentive to deviate and ϵ-NE could
provide better grounded insights in the utility space, in this case.

8 Note that this is not generally true for all instances of our game, under fully
aligned preferences, as shown in Figs. 5 and 6.

sity estimate (KDE) plot of the distribution of distances (over the
100 trials) between the learned strategies and the NE in Game20, in
Fig. 9. Under our distance metric detailed above, with a threshold of
0.02, independent MO-AC converges to the NE in this case in 90%
of the runs. Secondly, under the linear utility there is a continuum of
strategies, with Player 1 being able to shift his probability distribu-
tion from [1, 0] to 0.5, 0.5, while for Player 2 [1, 0] remains optimal.
Next to this continuum, there is one more NE present, namely strat-
egy [0, 1] for both players. Under MO-AC, we remark that the players
fully converge to this last NE (Fig. 7).

Also using KDE plots, we can visualise the convergence to NE
strategies under the linear utility function (Figs. 10) and the CD
utility function (Fig. 11), when w1 = 0.62 (i.e., (w1,1, w1,2) =
(0.62, 0.38) for Player 1) and w2 = 0.38 (i.e., (w2,1, w2,2) =
(0.38, 0.62) for Player 2). We observe that under linear utility func-
tion the players converge to one of the two pure NE (which are also
in the PCS) 96% of the time, in comparison to 87% for the CD util-
ity function. We also note that, for both utility functions, the mixed
strategy NE (Player 1 [0.86, 14], Player 2 [0.38, 0.62]) appears to be
challenging to learn using MO-AC, however we did observe runs in
the CD utility function case that achieved this outcome.

The final setting we turn our attention to is one in which the play-
ers’ preferences are fully misaligned, namely w1 = 1.0 and w2 = 0.
Under both utility functions, there is again a continuum of NEs,
where Player 1 can shift his strategy from fully playing L ([1, 0])
to fully playing R ([0, 1]), while the optimum strategy for Player 2
is [0, 1] in all cases. The visualise the results in this setting, we use
a scatter plot and represent on the x-axis the probability of selecting
action L for Player 1 and on the y-axis the probability of selecting
action L for Player 2, and plot the joint strategy for each of our 100
runs. In this region of the weight space, both utility functions induce
a similar behaviour, with player converging more often towards the
cluster of NEs that are not Pareto optimal (i.e., with a higher proba-
bility of Player 1 to select L), as it can be observed in Figs. 12 and 13.
This result reinforces our hypothesis that when the preferences over
the objectives are in strong disagreement, the probability of converg-
ing to a Pareto optimal equilibria is negatively affected.
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Figure 10: Kernel density estimate plot of the distribution of the dis-
tances between learned strategies and NE, with a linear utility func-
tion, w1 = 0.62, w2 = 0.38.
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Figure 11: Kernel density estimate plot of the distribution of the dis-
tances between learned strategies and NE, with a CD utility function,
w1 = 0.62, w2 = 0.38.
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Figure 12: Scatter plot of the learned joint strategies in each of the
100 runs, with a linear utility function, w1 = 1.0, w2 = 0.0.

0.0 0.2 0.4 0.6 0.8 1.0
Player 1 Probability of action L

0.0

0.2

0.4

0.6

0.8

1.0

P
la

ye
r 2

 P
ro

ba
bi

lit
y 

of
 a

ct
io

n 
L

Figure 13: Scatter plot of the learned joint strategies in each of the
100 runs, with a CD utility function, w1 = 1.0, w2 = 0.0

5 Conclusion and Future Work

In this work we contrasted the two potential approaches for MODeM,
namely the utility-based and axiomatic approaches, in the context of
multi-agent systems. We conducted our analysis on a novel MONFG,
Game20 (Table 1). Under the axiomatic approach, we derived the en-
tire Pareto coverage set over the mixed-strategy profiles of all play-
ers. Under the utility-based approach, we considered the scalarised
expected returns optimisation criterion and derived all the Nash equi-
libria under parameterised linear and non-linear utility functions.

Using parameterised utility functions allowed us to perform a cor-
relation analysis between the players’ preferences and to gain more
insight on the impact of this aspect on the learning process and re-
sulting stable solutions. Our analysis demonstrated in for some pref-
erence combinations with a very low correlation, the probability of
finding a Nash equilibrium that is Pareto optimal is much lower.

Furthermore, we demonstrated that under non-linear utility, for
certain preference combinations, the set of NE and the PCS are dis-
joint, implying that in these situations Pareto-based approaches will
not find stable solutions in the joint strategy space.

For the learning experiments, we used independent multi-objective

actor critic, and investigated the convergence probabilities to the set
of NE, both for Pareto and non-Pareto optimal outcomes. We ob-
served that when preferences are in strong disagreement, conver-
gence to Pareto optimal equilibria was negatively impacted, with
players ending up exclusively in dominated equilibria.

We hope that this initial analysis will draw more attention to the
importance of studying the alignment between the preferences of the
users in multi-objective settings, as this will likely have a strong im-
pact on the number of stable solutions and on the capacity of learn-
ing approaches to converge to Pareto optimal outcomes. This will be
crucial in future decision-support systems, in domains such as smart
grids, logistics, resource management, etc.

In this work we have adopted the stateless MONFG framework for
our analysis. Our findings should be extended to sequential settings,
e.g., multi-objective stochastic games (MOSGs), to better reflect and
translate to real-world problem domains.

Finally, another future research avenue we are interested to pursue
is helping agents to converge on the Nash equilibrium that is best in
terms of social welfare. This may require optimisation from a global
perspective or the use of joint action learners and potentially oppo-
nent modelling techniques.
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Roxana Rădulescu is supported by the Research Foundation – Flan-
ders (FWO), grant number 1286223N. The resources and services
used in this work were provided by the VSC (Flemish Supercom-
puter Center), funded by the FWO and the Flemish Government.

References

[1] Steven Durlauf and Lawrence E Blume, The new Palgrave dictionary
of economics, Springer, 2016.
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[15] Roxana Rădulescu, Patrick Mannion, Diederik Marijn Roijers, and Ann
Nowé, ‘Multi-objective multi-agent decision making: a utility-based
analysis and survey’, Autonomous Agents and Multi-Agent Systems,
34(10), (2020).
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A Experimental setting overview

Tables 2 and 3 present an overview of all the weight preferences used in our experimental setup: w1 represents Player 1’s weight for the first
objective, i.e., (w1,1, w1,2) = (w1, 1 − w1), while w2 represents Player 2’s weight for the first objective, i.e., (w2,1, w2,2) = (w2, 1 − w2),
under either the linear or CD utility function. The tables also include, for each weight combination, the expected payoffs for each NE, the NE
joint strategy, as well as the convergence probability to each of the NE of our learning approach, the multi-objective actor critic (MO-AC). In
the ‘NE expected payoff’ column, we highlight in bold the NE outcomes that are also part of the PCS.

We note that in settings in which the players’ preferences are aligned, (w1 = 0, w2 = 0) or (w1 = 1, w2 = 1), there is only one NE present
and our approach manages to converge to the NE strategy 100% of the time. On the other end of the alignment spectrum, when the players’
preferences are completely opposing (w1 = 1, w2 = 0), the convergence rate to NE is still maintained, however the players do not manage to
converge to the Pareto optimal NE.

Table 2: Overview of the linear utility weight combinations used in the learning evaluation.

w1 w2 NE expected payoff Convergence probability Strategies

Player 1 Player 2

0.0 0.0 [1, 3] 1.0 [0, 1] [0, 1]

0.0 0.5 [3, 1] 0.0 [1, 0] [1, 0]
[2.99, 1], ..., [2.5, 1] 0.0,...,0.0 [0.99, 0.01], ..., [0.5, 0.5] [1, 0], ..., [1, 0]
[1, 3] 1.0 [0, 1] [0, 1]

0.5 0.5 [3, 1] 0.45 [1, 0] [1, 0]
[1.75, 1.75] 0.0 [0.5, 0.5] [0.5, 0.5]
[1, 3] 0.55 [0, 1] [0, 1]

0.61 0.48 [3, 1] 0.49 [1, 0] [1, 0]
[1.61, 1.88] 0.0 [0.56, 0.44] [0.39, 0.41]
[1, 3] 0.51 [0, 1] [0, 1]

0.62 0.38 [3, 1] 0.13 [1, 0] [1, 0]
[1.7, 1.7] 0.0 [0.86, 0.14] [0.38, 0.62]
[1, 3] 0.86 [0, 1] [0, 1]

1.0 0.0 [1, 2] 0.34 [1, 0] [0, 1]
[1, 2.01], ..., [1, 2.99] 0.45, ..., 0 [0.99, 0.01], ..., [0.01, 0.99] [0, 1], ..., [0, 1]
[1, 3] 0.0 [0, 1] [0, 1]

1.0 0.6 [3, 1] 1.0 [1, 0] [1, 0]
[1, 2.8], ..., [1, 2.99] 0.0, ..., 0.0 [0.2, 0.8], ..., [0.01, 0.99] [1, 0], ..., [1, 0]
[1, 3] 0.0 [1, 0] [1, 0]

1.0 1.0 [3, 1] 1.0 [1, 0] [1, 0]

Table 3: Overview of the CD utility weight combinations used in the learning evaluation.

w1 w2 NE expected payoff Convergence probability Strategies

Player 1 Player 2

0.0 0.0 [1, 3] 1.0 [0, 1] [0, 1]

0.0 0.5 [1.25, 1.25] 0.90 [0, 1] [0.25, 0.75]

0.5 0.5 [2.5, 1.25] 0.39 [1, 0] [0.75, 0.25]
[1.75, 1.75] 0.0 [0.5, 0.5] [0.5, 0.5]
[1.25, 2.5] 0.51 [0, 1] [0.25, 0.75]

0.61 0.48 [2.4, 1.3] 0.73 [1, 0] [0.7, 0.3]
[1.2, 2.6] 0.13 [0, 1] [0.2, 0.8]

0.62 0.38 [1.9, 1.55] 0.2 [1, 0] [0.45, 0.55]
[1.7, 1.7] 0.01 [0.86, 0.14] [0.38, 0.62]
[1, 3] 0.67 [0, 1] [0, 1]

1.0 0.0 [1, 2] 0.34 [1, 0] [0, 1]
[1, 2.01], ..., [1, 2.99] 0.45, ..., 0.0 [0.99, 0.01], ..., [0.01, 0.99] [0, 1], ..., [0, 1]
[1, 3] 0.0 [0, 1] [0, 1]

1.0 0.6 [3, 1] 1.0 [1, 0] [1, 0]

1.0 1.0 [3, 1] 1.0 [1, 0] [1, 0]
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B Additional results
Figures 14 and 15 show heatmaps of the number of Nash equilibria that are Pareto optimal for all the possible weight combinations under the
linear and CD utility functions. For the linear utility function the number of Pareto optimal NE for each weight combination ranges between 1
and 3, while for the CD utility there are some weight combinations where there are no Pareto optimal NE.

Figure 14: Heatmap of the number of computed Nash equilibria that
are Pareto optimal when both players use a linear utility function.

Figure 15: Heatmap of the number of computed Nash equilibria that
are Pareto optimal when both players use a CD utility function.
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