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Abstract. Real-world problems often involve multiple decision-
makers as well as multiple, potentially conflicting, objectives. It is
crucial to ensure that the methods developed for these settings cap-
ture and are able to handle these aspects. To this end, we first pro-
vide a novel benchmark for multi-objective reinforcement learning,
in both single and multi-agent settings, starting from the DeepDrive
Zero self-driving car simulator. Secondly, we construct and assess
the performance of multi-objective versions of actor-critic reinforce-
ment learning approaches in MO-DeepDrive Zero, under both linear
and non-linear utility functions, against their single-objective coun-
terparts. Additionally, we benchmark the performance of a multi-
policy approach, Pareto Conditioned Networks, in the unknown util-
ity scenario. We emphasise and demonstrate the importance of taking
a multi-objective perspective for the quality of the learnt behaviour,
when the setting warrants it.

1 Introduction

Upon examining real-world decision problems, we recognise that
they often represent multi-objective problems, where multiple, of-
ten conflicting, criteria need to be considered. For example, due to
cloud computing, big data and an increase in internet users across
the globe, more data storage and processing capabilities are needed.
Data centres meet this increase in demand by investing in faster hard-
ware, but at the same time aim to reduce the energy required due to
the increase in energy prices [10]. This necessitates a trade-off be-
tween two conflicting objectives: performance and energy consump-
tion [26].

Nonetheless, when looking at the reinforcement learning literature,
we often see such real-world problems modelled using a scalar re-
ward signal constructed using an ad-hoc linear combination of the
objectives and engineered to output desirable behaviour. As Hayes et
al. [7] argue, this approach comes with severe limitations, including
the potential for suboptimal trade-offs as well as impacting the ex-
plainability and trustworthiness of the system, since we can no longer
relate the learned policy to the individual impact on each considered
objective. In this work, we focus explicitly on the multi-objective
nature of decision problems and take a utility-based approach, con-
sidering the user’s utility as the main optimisation goal [7].

The multi-objective reinforcement learning field, and in particular its
extension to multiple agents, significantly lacks benchmarks based
on realistic settings [17]. As such, the first contribution of this work
is deconstructing an existing single-objective multi- and single-agent
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self-driving car simulator and transforming it into a novel multi-
objective benchmark, MO-DeepDrive Zero. While the original sim-
ulator considers a single scalar reward, a careful inspection of the
reward function reveals that it is constructed as a linear combination
of multiple objectives. The second contribution of this paper is ex-
tending a single-objective reinforcement learning algorithm, namely,
Advantage-Actor Critic, that can tackle the modified self-driving car
problem both for multi- and single-agent settings even when the util-
ity function of the decision maker (i.e. the driver) is non-linear. As
most single-objective reinforcement learning algorithms make an as-
sumption of linearity, allowing for such non-linear utility functions
presents additional challenges.

We compare these modified algorithms with their original counter-
part to showcase the learning difference when considering the po-
tential non-linear nature of utilities. For the multi-agent setting, we
make use of independent learners. Our findings show a significant
difference in learning performance and stability between both varia-
tions in the single-agent multi-objective setting.

2 Background

We formally introduce the relevant multi-objective reinforcement
learning concepts and the utility-based approach we follow in this
work.

2.1 Multi-Objective Reinforcement Learning

Single-agent decision problems where an agent aims to optimise over
different objectives can be modelled as a multi-objective Markov
decision process (MOMDP) [7]. Formally, an MOMDP is a tuple
(S,A, T, γ,R) where S is the set of states, A the set of actions,
T : S × A × S → [0, 1] the transition function, γ ∈ [0, 1) the dis-
count factor, and R : S × A × S → Rd, the d-dimensional reward
function with d ≥ 2.

At each timestep t, the agent in state st ∈ S picks an action at ∈ A
and receives the next state st+1 ∈ S as well as a vector-valued
reward rt ∈ R. As in a single-objective MDP, the agent aims to
learn a policy π ∈ Π that maximises its cumulative discounted re-
ward.

In a single-objective MDP, state value functions, V π , i.e. the ex-
pected cumulative discounted reward, induce a partial ordering over
policies. For a given state, the ordering is complete: π ≥ π′ ⇔
∀s, V π(s) ≥ V π′

(s). The value function of the optimal policy can
subsequently be defined as V ∗(s) = maxπ V π(s), for all states s



[24]. In MOMDPs, we can define a vectorial value function analo-
gously,

Vπ = Eπ

[
∞∑
t

γtrt|π, µ0

]
. (2.1)

As the value function is vectorial, it no longer allows for a total or-
dering over policies, even given a state, and necessitates an agent to
learn a set of solutions that are potentially optimal.

2.2 Utility-Based Approach

In this work, we take a utility-based approach [7] which assumes the
existence of a (potentially unknown) utility function, that reflects the
user’s preferences over the considered objectives and can be used to
map the vectorial return to a scalar value: u : Rd → R.

2.2.1 Optimisation Criteria

An important complication of the utility-based approach is how to
optimise for a given utility function. Specifically, given a utility func-
tion u it is possible that the decision maker aims to optimise the
expected utility of each individual policy execution, leading to the
Expected Scalarised Returns (ESR) criterion, formally defined be-
low.

V π
u = E

[
u

(
∞∑
i=0

γiri

)
|π, s0

]
(2.2)

On the other hand, it is possible that a decision-maker evaluates the
utility of a policy based on its expected returns. This is known as
the Scalarised Expected Returns (SER) criterion and is defined be-
low.

V π
u = u

(
E

[
∞∑
i=0

γiri|π, s0

])
(2.3)

Under linear utility functions, ESR and SER are equivalent due to the
linearity of expectation. When allowing non-linear utility functions,
however, the distinction becomes important and has been shown
to lead to different optimal policies and even appropriate solution
concepts. In this work, we mainly focus on the SER criterion. We
note however that the novel benchmark described in Section 3 does
not enforce either of these criteria, or indeed the utility-based ap-
proach and is therefore applicable for a range of different interpreta-
tions.

2.2.2 Solutions

The solutions we learn target two distinct settings. First, in the un-
known utility function scenario, the utility function of the user is not
known during the planning or learning phase. As such, a solution set
must be computed which contains all policies that are potentially op-
timal for the decision maker. When assuming monotonically increas-
ing utility functions, i.e. the decision maker prefers more of each ob-
jective given all else equal, a natural and well-studied solution set for
MOMDPs is the Pareto front. The Pareto front leverages the Pareto
dominance relation to establish a partial ordering over policies. Con-
cretely, we say a policy π Pareto dominates another policy π′ when
∀i : Vπ

i ≥ Vπ′
i ∧ ∃i : Vπ

i > Vπ′
i . The Pareto front then contains

all policies for which no other policy exists which Pareto dominates
it. We note that other solution sets exist with various theoretical and
practical motivations (i.a., [3, 8, 21]).

The second setting we target is the known utility function scenario.
Here, we assume that explicit knowledge of the utility function is
available and as such we may optimise it directly. When the utility
function is linear, the problem can be shown to reduce to the regular
reinforcement learning objective on the weighted sum. For non-linear
utility functions however this does not hold and one needs additional
techniques to show convergence to (local) optima [19].

2.3 Multi-objective multi-agent reinforcement
learning

Finally, we introduce multi-objective multi-agent reinforcement
learning. To model such settings, we can extend the definition of
MOMDPs to allow for multiple agents. Concretely, we consider a
tuple (S,A, T, γ,R) with n ≥ 2 agents and d ≥ 2 objectives,
where S is the set of states, A is the set of joint actions (with
A = A1×...×An with Ai = set of actions for agent i), T is the tran-
sition function, γ is the discount factor, and R = R1 × ...×Rn are
the environment reward functions (with Ri : S×A×S → Rd is the
d-dimensional reward function of agent i). Such settings are known
in game-theoretic terms as multi-objective stochastic games.

Analogous to single-agent MOMDPs, at each timestep t each agent
in state st selects an action and obtains the next state st+1 and vecto-
rial reward rt from the environment. The vectorial reward associated
with each agent may differ and is also influenced by the actions taken
by the other agents within the environment. The goal of each agent
is to find an optimal policy π∗

i , which maximises its cumulative dis-
counted reward. Depending on whether the environment is coopera-
tive or competitive in nature, agents may choose to coordinate joint
actions to ensure higher rewards.

In this work, we focus on the known utility scenario in our multi-
agent contributions. In this setting, a popular approach for agents to
learn a policy is to enable individual agents to learn using a stan-
dard single-agent algorithm and ignore the presence of other agents,
referred to as independent learners. While these learning dynam-
ics result in a non-stationary system from the individual perspective
of each agent, thereby breaking known convergence and optimality
guarantees, it has empirically been demonstrated to work reasonably
well [30].

3 Multi-Objective DeepDrive Zero
The domain of MORL is a recent field of study compared to its
single-objective counterpart. As such, the accessibility and variety
of benchmarks is limited. Modifying existing established single-
objective benchmarks to return a vectorial reward is not straightfor-
ward as the underlying multi-objective nature needs to be studied and
justified concretely. Since the release of MO-Gymnasium [4] at the
end of 2022, there has been a standardised API and centralised repos-
itory for well-known benchmarks in MORL literature. Environments
such as Deep-Sea-Treasure [29] and Minecart [1] have been preva-
lent due to their longevity in multi-objective research [27, 19] and
clear multi-objective nature. As such, these environments have been
the go-to benchmarks for evaluating MORL algorithms. However,
the drawback of these environments is that they lack direct relevance
to a real-life setting.

DeepDrive [14] is an open-source self-driving simulator built and
rendered in Unreal Engine. It exposes a Python interface with the
standard OpenAI Gym API [5] to enable its use for reinforcement
learning research. This benchmark can be used as a first step in the
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(a) OneWaypoint (b) StaticObstacle

(c) Intersection

Figure 1: Three environment variations we consider from the
deepdrive-zero benchmark. Orange circle represents the end desti-
nation. Lines in 1a and 1b should be ignored.

self-driving process by testing the algorithm in the simulator before
applying it to a real-world vehicle. The DeepDrive simulator needs
substantial resources both computationally and graphically. As such,
a lightweight alternative was developed called DeepDrive Zero [15]
that can be used to evaluate RL algorithms before using them in the
complete DeepDrive benchmark. Unfortunately, to the best of our
knowledge, the development for both the DeepDrive and DeepDrive
Zero benchmarks has been abandoned. There has been no update
since June 2020 for the DeepDrive benchmark and November 2021
for the DeepDrive Zero benchmark1. However, the DeepDrive Zero
benchmark is still a very interesting simulator for the development
and introduction to the field of single-agent, multi-agent, single-
objective and multi-objective RL. First, the benchmark has three
different environment variations, two single-agent environments and
one multi-agent environment, all based on engaging self-driving sce-
narios. Secondly, depending on the environment variation, the actual
problem to solve is very complex due to the large state and action
space, For example, the most complicated environment, the intersec-
tion environment, has 1027 possible actions at every timestep [16].
Lastly, the benchmark has an explicit underlying multi-objective na-
ture that can be explored and used as a benchmark for multi-objective
decision problems. Below, we briefly discuss each original environ-
ment and subsequently describe the modifications that were made to
enable their use in MORL research.

3.1 OneWayPoint environment

The OneWayPoint environment is the simplest environment variation
in the benchmark and shown in Figure 1a. In this scenario, a single
vehicle must drive to the end destination, highlighted by an orange
circle. The placement of the orange circle is random and changes ev-
ery episode thereby ensuring that the vehicle does not learn a fixed

1 See the corresponding GitHub repositories: https://github.com/deepdrive/
deepdrive and https://github.com/deepdrive/deepdrive-zero

route but rather learns to dynamically drive a route using its observa-
tions.

3.2 StaticObstacle environment

The StaticObstacle environment is the second most challenging envi-
ronment. This scenario includes a static obstacle which is represented
as a bike. Naturally, the goal is for the agent to reach its destination
while avoiding a collision with the bike. Both the placement of the
obstacle and the end destination are random.

3.3 Intersection environment

Finally, the Intersection environment is the most difficult environ-
ment and introduces an additional agent for more realistic settings.
This environment represents the unprotected left turn scenario, one
of the most difficult scenarios for both autonomous vehicles and hu-
man drivers [16, 6]. In this scenario, two vehicles need to cross an
intersection to reach two different destinations without colliding and
staying in the correct lane. Vehicle one (top vehicle in Figure 1c) has
the easiest trajectory as it only needs to go straight until it reaches the
orange circle. Vehicle two’s trajectory is more difficult as it needs to
go straight, turn to the left and reach the green circle at the left side
of the intersection.

3.4 Action space

The action space of the environment can be continuous or discrete.
However, the discrete action space is an abstraction layer, and the
actual discrete action gets converted back to a continuous action. The
continuous action space is a three-dimensional vector of variables
describing the steer, acceleration and brake. Each variable should be
a continuous value between -1 and +1. Steer is the heading angle of
the vehicle where -1 is −360◦, 0 is 0◦ and +1 is 360◦. Acceleration is
the acceleration value in m/s2 and brake is the braking force where -
1 is 0g and +1 1g. For the discrete action space, the values lie between
0 and 21, where 0 is ’idle’, and 21 is ’large steer right and increase
speed’. All other values are a combination of increasing, maintaining
or decreasing speed and steering left or right.

3.5 Observation space

Depending on the environment variation, the observation space is ei-
ther a 15-dimensional, 19-dimensional, or 29-dimensional discrete
box. The observation includes the previous and current position,
steering, acceleration and brake values. It also includes the distance
between the vehicle and the lane for the Intersection environment and
the distance until the end destination. The observation also includes
the positioning of an obstacle or other vehicle in combination with
its speed and angle, which is motivated by the fact that in real life,
self-driving vehicles make use of their lidar or radar to determine the
positioning, speed and angle of other objects and vehicles in their
surrounding.

3.6 Modifications

Before adapting DeepDrive Zero to the multi-objective setting, we
had to make several changes to the existing codebase. First, the orig-
inal benchmark fails during the initialisation of an environment due
to bugs in the initialisation of the observation space. Fixing this is-
sue enables the basic functionality of the environments. Second, the
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StaticObstacle environment did not implement an actual collision
detection mechanism to verify that the car and bicycle do not col-
lide. Fortunately, the Intersection environment where collisions are
also part of the scenario included a collision detection mechanism.
Reusing and modifying this mechanism to detect the static obstacle
was necessary to make this environment variation work.

The Gym API used by this environment saw a significant version
update that introduces breaking changes to the API and is now
called Gymnasium. Accordingly, the benchmark was modified to
comply with the new API. One significant change concerns the
initialisation of the environment. Previously, the environment was
first initialised without defining the observation and action space.
The observation and action space was later initialised after calling
the configure_env function as the size depends on the user-
configurable parameters. However, the new version of the API re-
quires both spaces to be defined during initiation. As such, the envi-
ronment configuration is now part of the env.make function as a
parameter.

The Gymnasium API offers no support for multi-agent environments.
As such, the multi-agent Intersection environment is represented as
a single-agent environment where every other call to the step func-
tion alternates the current agent back and forth between vehicle one
and vehicle two. Since the release of the PettingZoo API [25] and
the RLlib MultiAgentEnv API [11], there have been two well-known
APIs that offer multi-agent support. Thereby, we created two envi-
ronment wrappers that comply with both without changing the un-
derlying environment functionality. Both wrappers are based on the
Parallel API, where return values and function calls use dictionaries
where the keys are agents.

3.7 Revealing the objectives

Self-driving vehicles need to take a number of different and con-
flicting objectives into account at the same time. For example, they
should bring passengers to their destinations as quick as possible
while ensuring a comfortable trip and avoiding dangerous situations.
When analysing the DeepDrive Zero benchmark, we see these cri-
teria reflected in a linear scalarisation that is returned as the reward
signal. Concretely, the reward is composed of the following objec-
tives:


distance

destination
g − force

jerk


OneWayPoint


distance

destination
g − force
collision
jerk


StaticObstacle


distance

destination
g − force
collision
jerk

lane violation


Intersection

Figure 2: Objectives for each environment variation in the deepdrive
benchmark

First, the distance objective measures how close the vehicle is to the
end destination and therefore serves as an incentive to plan an effi-
cient route. Second, the destination objective either returns 1 if the
destination was reached or 0 when this is not the case. Notably, there
is a correlation between the distance and destination objective as a
higher distance value increases the likelihood of reaching the desti-
nation. Next, the g-force and jerk objectives return their respective

values and can be used to impose preferences for smoother driving
styles. Finally, avoiding collision with other objects or vehicles and
lane violations are also presented as distinct objectives to the agent.
By exposing these objectives now directly to the learning agent, we
hope to inspire research that can find optimal trade-offs in the chal-
lenging area of self-driving. Our modified benchmark can be found
at https://github.com/sofyanajridi/mo-deepdrive.

4 Methods
We present an adaptation of a well-known single-objective algorithm
to function with multi-objectives and a known, potentially non-linear,
utility function. Both this algorithm, as well as the multi-policy algo-
rithm we employ in evaluating our novel environment, are optimising
for the SER criterion.

4.1 Accrued reward

A central concept in many multi-objective algorithms, including
the ones we employ in this work, is the accrued reward. The ac-
crued reward at any point is the cumulative discounted reward that
the agent has accrued until that point, i.e. R−

t =
∑t−1

t=0 γ
tRt.

It has been demonstrated that conditioning on an augmented state
Ŝt = (St, R

−
t ) is necessary when optimising non-linear utility func-

tions of the reward as the optimal action depends on the reward al-
ready accrued up until that point. Conditioning a policy on the aug-
mented state is analogous to conditioning on the full history, as is
common in for example partially observable MDPs. However, while
the history grows linearly in the episode length, the accrued reward
can be described in the number of objectives d, making it an at-
tractive substitute for learning algorithms. It is interesting to note
that accrued reward is not necessary when tackling single-objective
MDPs because of the Markov property and stationarity of the envi-
ronment [13]. We provide an example below to illustrate the compu-
tation of the accrued reward and its impact on the decision-making
of an agent [19].

Let us assume we are in a MOMDP with two objectives (d = 2), γ =
1 and a non-linear utility function u(r) = r21 + r22 . Suppose we are
in state S1 and do not take into account the previous reward (1, 5).
The best action to take here is the one that leads us to state S2. As we
have 52 + 12 = 26 compared to 32 + 42 = 25 when being in state
S3. If we do, however, take into account our accrued rewards, going
to state S3 leads to a higher utility as u = (1+ 5)2 + (5+ 1)2 = 72
for state S2 and u = (1 + 3)2 + (5 + 4)2 = 97 for S3.

Figure 3: Example of possible state transitions in a MOMDP.

4.2 Multi-Objective Advantage-Actor Critic

We extend the well-known Advantage Actor-Critic (A2C) [12] to
handle multiple objectives under the SER criterion. Previous work
has explored an extension to the ESR criterion [19]. A2C is a policy
gradient algorithm which uses a learnt estimator to approximate the
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advantage as a baseline and has been demonstrated to achieve high
performance in challenging environments. In addition, it is a classic
baseline in single-objective settings, making it an excellent algorithm
to evaluate in the multi-objective setting.

To extend A2C to the multi-objective setting with a known utility
function, we adapt both the critic and actor. Both models are trained
on the augmented state which is the state concatenated with the ac-
crued reward. First, the critic is parametrised by θ and trained to pre-
dict the state value function which maximises the given utility func-
tion. Concretely,

L(θq) = E[(y −Q(s, a; θq))2] (4.1)

where y = r + γm̃axa′Q(st+1, a
′; θ) and the maximum operator

is adapted to take the action which maximises the total utility when
combining the accrued reward with the state-action estimate. Sec-
ond, the actor is updated to follow the policy gradient together with
the advantage calculated as the difference in utility between the true
action that was taken and the optimal action, defined as

Ut = u
(
R−

t+1 + v̂ (St+1)
)
− u

(
R−

t + γtv̂ (St)
)
. (4.2)

Therefore, the complete update becomes,

θπt+1 = θπt + αUt∇ lnπ(At|St; θ
π
t ). (4.3)

It is interesting to note that while this loss makes intuitive sense,
and empirically can be shown to achieve good performance, a pol-
icy gradient update can be derived for non-linear utility functions
which takes a different form [19]. We intend to study this in future
work.

5 Experiments
We divide our experiments into three main categories:

• single-policy algorithms in a single-agent multi-objective setting

• single-policy algorithms in a multi-agent multi-objective setting

• multi-policy algorithm in a single-agent multi-objective setting

For each category, we perform experiments on the relevant environ-
ments. Specifically, for the single-agent multi-objective setting we
run experiments on the OneWayPoint and StaticObstacle environ-
ment while in the multi-agent multi-objective setting, we run experi-
ments on the Intersection environment.

Finally, in the known utility scenario, we evaluate our A2C adap-
tation with both a linear and non-linear utility function to compare
it with the original A2C. The exact utility functions used and their
explanation can be found in Appendix D. For the linear case, we ex-
pect similar performance with both algorithms, as the setting can be
shown to be equivalent to the scalarised single-objective problem.
However, taking a MORL approach helps with the explainability of
the agent’s decision-making as the effect of different policies on each
objective can be measured individually For the non-linear case, how-
ever, we hypothesise that a multi-objective approach offers a benefit.
In this case, we modify this single-objective variant to apply timestep
scalarisation on the received vectorial reward. We run each experi-
ment five times (four times for the multi-agent setting) and average
their results.

Additional information on the hyperparameters (Apendix A) and ex-
act utility functions (Appendix D) we use in our experiments can be
found in the appendix.

5.1 Results

Single-Policy Single-Agent OneWayPoint Looking at Figure 4,
we observe for the linear utility function that both MO-A2C and A2C
are able to solve the OneWayPoint environment. As expected, the
performance is similar for both algorithms which can be attributed
to the fact that a multi-objective decision problem can be reduced
to a single-objective decision problem if the utility is linear. For the
non-linear utility function, we find that MO-A2C reaches a higher
and more consistent utility compared to A2C. This happens because
we penalise the vehicle more on higher g-force and jerk values to
incentivise more comfortable and smoother driving behaviour when
the vehicle is making positive progress. This happens whenever the
distance objective is higher than 2. Because A2C is not able to han-
dle this non-linearity, it keeps trying to minimise its distance objec-
tive to stay under 2, which causes it to perform worse than MO-
A2C.

Single-Policy Single-Agent StaticObstacle Figure 5 shows the
results of A2C and MO-A2C on the StaticObstacle environment.
This is a more challenging environment with an obstacle in the ve-
hicle’s path and introduces an extra objective, namely a collision
penalty. We can again see the same pattern for the linear utility func-
tion. Both MO-A2C and A2C have nearly the same exact utility. The
non-linear utility function now not only penalises aggressive driving
behaviour when getting close to the destination but also penalises the
vehicle when it is staying stationary behind the obstacle. The MO-
A2C agent is learning consistently in this setting due to being able
to deal with this non-linearity. On the other hand, the A2C agent is
not able to converge in this setting, compared to the previous environ-
ment. As the non-linear utility function penalises an agent for staying
stationary, as well as on g-force and jerk when the vehicle is getting
closer to the end destination, the A2C agent learns to always drive
in the opposite direction of the destination and obstacle and makes
constant negative progress.

Single-Policy Multi-Agent Intersection We now look at how
MO-A2C and A2C perform in the multi-agent Intersection environ-
ment. The environment has two agents: vehicle 1 and vehicle 2. As
such, we use an independent learner for each of the vehicles. When
looking at the results for both the linear and non-linear utility func-
tions in Figure 6 (see Appendix B for complete results), it is appar-
ent that both agents are not learning. The total utility for both mostly
stays below zero. For the non-linear utility function, the independent
MO-A2C agents are only "failing" better than the independent A2C
agents.

We argue that for this problem, independent learners equipped with
A2C are not powerful enough. This has been remarked in prior work
as well [9]. To the extent of our knowledge, this is the only paper in
RL literature that has used the DeepDrive environment as a bench-
mark for experiments. While their experiments tackle a variation on
our setting, it is clear that DeepDrive presents difficult challenges.
We note that a more thorough hyperparameter search may help in in-
creasing the stability and performance. However, this implies that the
approach is not robust and further highlights the need for additional
algorithms in this challenging setting.

Multi-Policy Single-Agent OneWayPoint Finally, we execute
the Pareto Conditioned Network (PCN) algorithm [18] on the
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Figure 4: Average utility per episode for MO-A2C and A2C on the OneWayPoint environment
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Figure 5: Average utility per episode for MO-A2C and A2C on the StaticObstacle environment
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Figure 6: Average total utility per episode for MO-A2C and A2C on the Intersection environment
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Figure 7: The set of policies on the PF obtained using PCN on the OneWayPoint environment.

OneWayPoint environment to determine Pareto optimal policies. Fig-
ure 7 showcases the importance of the objectives for every policy
on the PF. The smoothness objective represents the smoothness of
the acceleration, which is represented using the jerk value. As the
smoothness objective increases, the jerk decreases. The comfort ob-
jective looks at the g-forces, with low g-forces increasing the comfort
of the ride. For example, if one prefers comfort and smoothness over
distance, policy one may be more suitable than policy four. However,
if a user aims to maximise distance, policy four is preferable. Inter-
estingly, maximising smoothness altogether results in a policy where
the vehicle roughly stays in the same place.

6 Related Work

In MORL literature, most proposed algorithms fall either under the
known utility function scenario or the unknown utility function sce-
nario. Under the known utility function scenario, algorithms have
been proposed for non-linear utility functions with for example the
Expected Utility Policy Gradient algorithm which explores the use
of accrued reward in policy gradient algorithms [20]. More recently,
Multi-Objective Categorical Actor-Critic was proposed for learning
an optimal policy under ESR [19]. This algorithm combines an actor-
critic approach with the distributional approach. Under the SER cri-
terion, novel policy gradient and actor-critic algorithms have been
proposed [2]. Finally, extensions to the popular single-objective al-
gorithms DQN, PPO and A2C have been explored to optimise the
non-linear generalised Gini social welfare function [23].

Under the unknown utility function scenario, the literature focuses
on multi-policy algorithms that learn a set of policies which are op-
timal for some utility function in a particular class. One such set is
the convex hull, which contains the optimal policies for decision-
makers with linear utility functions [3]. Under SER, learning the
Pareto front is a long-standing challenge that has been tackled by
multiple algorithms [18, 28]. Under the ESR criterion, recent work

has explored the use of stochastic dominance in defining novel so-
lution sets [8, 22]. For a thorough overview of multi-objective ap-
proaches, we refer to [7].

Finally, research into multi-objective multi-agent settings has been
scarce with most attempts focusing on a team-reward team-utility
scenario where all agents share both a reward and utility func-
tion. For a complete overview, we refer to a recent survey on the
topic [17].

7 Conclusion

In this work, we introduced a novel benchmark for MORL, MO-
DeepDrive Zero, that simulates a self-driving car and offers three
different scenarios including a multi-agent setting. In addition, we
propose an extension to the advantage actor-critic algorithm such that
it can optimise for a non-linear utility function in MORL settings.
We evaluate our algorithm on all three scenarios and find that it out-
performs a naive single-objective scalarised approach in single-agent
settings. In the multi-agent setting, however, independent learners
appear insufficient to learn the challenging task. This motivates fur-
ther research in the area of multi-agent multi-objective learning. Fi-
nally, we evaluate the PCN algorithm on a single-agent scenario to
determine the optimal policy under different trade-offs and find that
a broad range of behaviour can be learned.
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A Hyperparamters

Tables 1 and 2 specify the hyperparameters, as well as the actor and
critic neural network architecture, for both A2C and MO-A2C on the
different environment variations.

OneWayPoint
StaticObstacle Intersection

Learning rate 1e-4 1e-4
Discount factor 0.99 0.99

Actor network

Linear(state dim, 64),
ReLU(),

Linear(64, 32),
ReLU(),

Linear(32, n_actions),
Softmax()

Linear(state dim, 128),
ReLU(),

Linear(128, 64),
ReLU(),

Linear(64, n_actions),
Softmax()

Critic network

Linear(state dim, 64),
ReLU(),

Linear(64, 32),
ReLU(),

Linear(32, 1)

Linear(state dim, 128),
ReLU(),

Linear(128, 64),
ReLU(),

Linear(64, 1)
Optimizer Adam Adam

Table 1: Hyperparameters for the regular A2C algorithm

OneWayPoint
StaticObstacle Intersection

Learning rate 1e-4 1e-4
Discount factor 0.99 0.99

Actor network

Linear(state dim, 64),
ReLU(),

Linear(64, 32),
ReLU(),

Linear(32, n_actions),
Softmax()

Linear(state dim, 128),
ReLU(),

Linear(128, 64),
ReLU(),

Linear(64, n_actions),
Softmax()

Critic network

Linear(state dim, 64),
ReLU(),

Linear(64, 32),
ReLU(),

Linear(32, n_obj)

Linear(state dim, 128),
ReLU(),

Linear(128, 64),
ReLU(),

Linear(64, n_obj)
Optimizer Adam Adam

Table 2: Hyperparameters for the MO-A2C algorithm

B Intersection environment individual vehicle
utilities

Figures 8 and 9 showcase the individual utility of each vehicle for
both A2C and MO-A2C.

C Multi-Policy Single-Agent OneWayPoint

Figure 10 illustrates the wide variety of different policies found by
the PCN algorithm on the OneWayPoint environment. Note, how-
ever, that the original problem has four objectives. As such, dimen-
sionality reduction was applied to the objectives to visualise them in
a two-dimensional plot.

D Utility functions

D.1 OneWayPoint Environment

We use the following linear utility function:

u = w0d+ w1r − w2g − w3j
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(a) Linear utility function

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Episode 1e5

100

80

60

40

20

0

Ut
ilit

y

MO-A2C
A2C

(b) Non-linear utility function

Figure 8: Vehicle 1 utility utility per episode for MO-A2C and A2C
on the Intersection environment

where d, r, g and j are distance, destination, g-force and jerk re-
spectively. The following weights are used: w0 = 0.50, w1 = 1,
w2 = 0.03 and w3 = 3.3× 10−5 As for the non-linear utility func-
tion:

u =

{
w0d+ w1dr − w2g − w3j if d > 2,

w0d+ w1r − (w2g)
2 − (w3j)

2 otherwise.

where w0 = 0.50, w1 = 1, w2 = 0.1 and w3 = 0.1. This non-linear
preference models a situation where we penalise the vehicle less on
comfortability and smoothness when the vehicle is making negative
progress on reaching the end destination and more when the vehicle
is following the correct path.

D.2 StaticObstacle Environment

We use the following linear utility function:

u = w0d+ w1r − w2c− w3g − w4j

where c is collision. The following weights are used: w0 = 0.30,
w1 = 1, w2 = 1, w3 = 0.03 and w4 = 3.3 × 10−5. As for the
non-linear utility function:

u =


p if d = 0,

w0d+ w1r − w2c− (w3g)
4 − (w4j)

4 if d < 0,

w0d+ w1r − w2c− 2 · (w3g)
2 otherwise.

where w0 = 0.50, w1 = 1, w2 = 4, w3 = 0.03, w4 = 3.3 × 10−5

and p = −10. This non-linear utility function models a situa-
tion where we again penalise the vehicle less on comfortability and
smoothness when the vehicle is making negative progress and more
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Figure 9: Vehicle 2 utility utility per episode for MO-A2C and A2C
on the Intersection environment

Figure 10: PCN

when it is following the correct path. However, we also penalise the
vehicle when it stays still. As the StaticObstacle environment now
has a bicycle it needs to avoid, we incentives the vehicle to find a
path that avoids the obstacle totally.

D.3 Intersection Environment

We use the following linear utility function:

u = w0d+ w1r − w2c− w3g − w4j − w5l

where l is lane violation. The following weights are used: w0 = 0.50,
w1 = 10, w2 = 4, w3 = 0.03, w4 = 0.0006, w5 = 0.06 and

p = −10. As for the non-linear utility function:

u =


p if d = 0,

w0d+ w1r − w2c− (w3g)
4 − (w4j)

4 − w5l if d < 0,

w0d+ w1r − w2c− 2 · (w3g)
2 − w5l, otherwise.

where w0 = 0.50, w1 = 1, w2 = 4, w3 = 0.03, w4 = 3.3× 10−5,
w5 = 0.06 and p = −10
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